如圖,在菱形ABCD中,∠ABC=60°,BC=1 cm,以DC為邊在菱形的外部作正三角形CDE,連接AE,則AE cm.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


為了響應(yīng)市政府“綠色出行”的號(hào)召,小張上下班由自駕車方式改為騎自行車方式.已知小張單位與他家相距20千米,上下班高峰時(shí)段,自駕車的平均速度是自行平均車速度的2倍,騎自行車所用時(shí)間比自駕車所用時(shí)間多小時(shí).求自駕車平均速度和自行車平均速度各是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


 (2×103)2×(3×10-3) =               .(結(jié)果用科學(xué)計(jì)數(shù)法表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


     反比例函數(shù)y (k為常數(shù),k≠0)的圖象是雙曲線.當(dāng)k>0時(shí),雙曲線兩個(gè)分支分別在

一、三象限,在每一個(gè)象限內(nèi),yx的增大而減。ê(jiǎn)稱增減性);反比例函數(shù)的圖象關(guān)于

   原點(diǎn)對(duì)稱(簡(jiǎn)稱對(duì)稱性).   

   這些我們熟悉的性質(zhì),可以通過說理得到嗎?

  【嘗試說理】

我們首先對(duì)反比例函數(shù)yk>0)的增減性來進(jìn)行說理.

如圖,當(dāng)x>0時(shí).

在函數(shù)圖象上任意取兩點(diǎn)AB,設(shè)A(x1),B(x2,),

且0<x1 x2

下面只需要比較的大。

∵0<x1 x2,∴x1-x2<0,x1 x2>0,且 k>0.

<0.即

這說明:x1 x2時(shí),.也就是:自變量值增大了,對(duì)應(yīng)的函數(shù)值反而變小了.

即:當(dāng)x>0時(shí),yx的增大而減。

同理,當(dāng)x<0時(shí),yx的增大而減。

(1)試說明:反比例函數(shù)y (k>0)的圖象關(guān)于原點(diǎn)對(duì)稱.

   【運(yùn)用推廣】

(2)分別寫出二次函數(shù)yax2 (a>0,a為常數(shù))的對(duì)稱性和增減性,并進(jìn)行說理.

對(duì)稱性:                                            ;

增減性:                                             

說理:

(3)對(duì)于二次函數(shù)yax2bxc (a>0,a,bc為常數(shù)),請(qǐng)你從增減性的角度,簡(jiǎn)要解釋為何當(dāng)x=— 時(shí)函數(shù)取得最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


計(jì)算       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


解方程 2x2-4x+1=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知二次函數(shù)ya(x-1)2-4的圖象經(jīng)過點(diǎn)(3,0).

    (1)求a的值;

    (2)若Am,y1)、Bmn,y2)(n>0)是該函數(shù)圖象上的兩點(diǎn),當(dāng)y1y2時(shí),求m、n之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,梯形中,AD∥BC,,AB=AD=6,BC=9,以為圓心在梯形內(nèi)畫出一個(gè)最大的扇形(圖中陰影部分)的面積是            。

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


根據(jù)下列表格中的對(duì)應(yīng)值,判斷方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的根的個(gè)數(shù)是(  。

A.0      B.1     C.2     D.1或2

x

6.17

6.18

6.19

6.20

y=ax2+bx+c

0.02

-0.01

0.02

0.04

查看答案和解析>>

同步練習(xí)冊(cè)答案