【題目】如圖,BEBF三等分∠ABC,CECF三等分∠ACB,∠A60°,求∠BEC和∠BFC的度數(shù).

【答案】100°,140°

【解析】

延長BEACG,由三角形外角性質(zhì),可得∠BEC=∠BGC+ACE,∠BGC=∠A+ABE,再根據(jù)BEBF三等分∠ABC,CECF三等分∠ACB,即可得到∠BEC和∠BFC的度數(shù).

如圖,延長BEACG,

由三角形外角性質(zhì),可得∠BEC=∠BGC+ACE,∠BGC=∠A+ABE,

BEBF三等分∠ABC,CECF三等分∠ACB

∴∠ABEABC,∠ACEACB

又∵∠ABC+ACB180°﹣∠A,

∴∠BEC=∠A+ABC+ACB=∠A+180°﹣∠A)=60°+A,

當(dāng)∠A60°時(shí),∠BEC60°+×60°=100°,

同理可得,∠BFC=∠A+180°﹣∠A)=120°+A120°+×60°=140°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一動點(diǎn)從原點(diǎn)出發(fā),按向上.向右.向下.向右的方向依次平移,每次移動一個單位,得到(0,1),(1,1),(1,0),(2,0),…那么點(diǎn)的坐標(biāo)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c所表示的數(shù)在數(shù)軸上的位置如圖所示:

1)化簡:a-1│-c+b│+│b-1│;

2)若a+b+c=0,b-1的距離和c-1的距離相等,求:-a2+2b-c-(a-4c-b)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】織金縣某中學(xué)300名學(xué)生參加植樹活動,要求每人植47棵,活動結(jié)束后隨機(jī)抽查了若干名學(xué)生每人的植樹量,并分為四種類型,A4棵;B5棵;C6棵;D7棵.將各類的人數(shù)繪制成扇形圖(如圖1)和條形圖(如圖2).

回答下列問題:

1)在這次調(diào)查中D類型有多少名學(xué)生?

2)寫出被調(diào)查學(xué)生每人植樹量的眾數(shù)、中位數(shù);

3)求被調(diào)查學(xué)生每人植樹量的平均數(shù),并估計(jì)這300名學(xué)生共植樹多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同學(xué)們都知道:|5﹣(﹣2|表示5與﹣2之差的絕對值,實(shí)際上也可理解為5與﹣2兩數(shù)在數(shù)軸上所對應(yīng)的兩點(diǎn)之間的距離.請你借助數(shù)軸進(jìn)行以下探索:

1)數(shù)軸上表示5與﹣2兩點(diǎn)之間的距離是   ;

2)數(shù)軸上表示x2的兩點(diǎn)之間的距離可以表示為   ;

3)同理|x+3|+|x1|表示數(shù)軸上有理數(shù)x所對應(yīng)的點(diǎn)到﹣31所對應(yīng)的點(diǎn)的距離之和,請你找出所有符合條件的整數(shù)x,使得|x+3|+|x1|4,這樣的整數(shù)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)綠色出行號召越來越多市民選擇租用共享單車出行,已知某共享單車公司為市民提供了手機(jī)支付和會員卡支付兩種支付方式如圖描述了兩種方式應(yīng)支付金額y()與騎行時(shí)間x(時(shí))之間的函數(shù)關(guān)系,根據(jù)圖象回答下列問題:

(1)求手機(jī)支付金額y()與騎行時(shí)間x(時(shí))的函數(shù)關(guān)系式;

(2)李老師經(jīng)常騎行共享單車,請根據(jù)不同的騎行時(shí)間幫他確定選擇哪種支付方式比較合算

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l1y2x+4y軸交于A點(diǎn),與x軸交于點(diǎn)B,經(jīng)過A點(diǎn)的直線l2與直線l1所夾的銳角為45°.

1)過點(diǎn)BCBAB,交l2C,求點(diǎn)C的坐標(biāo).

2)求l2的函數(shù)解析式.

3)在直線l1上存在點(diǎn)M,直線l2上存在點(diǎn)N,使得點(diǎn)A、OM、N四點(diǎn)組成的四邊形是平行四邊形,請直接寫出點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=﹣x2+bx+3的圖象與x軸交于A、C兩點(diǎn)(點(diǎn)A在點(diǎn)C的左側(cè)),與y軸交于點(diǎn)B,且OAOB

1)求線段AC的長度;

2)若點(diǎn)P在拋物線上,點(diǎn)P位于第二象限,過PPQAB,垂足為Q.已知PQ,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AB⊙O的直徑,AE是弦,C是劣弧AE的中點(diǎn),過CCD⊥AB于點(diǎn)DCDAE于點(diǎn)F,過CCG∥AEBA的延長線于點(diǎn)G

1)求證:CG⊙O的切線.

2)求證:AF=CF

3)若∠EAB=30°,CF=2,求GA的長.

查看答案和解析>>

同步練習(xí)冊答案