【題目】如圖,BE和BF三等分∠ABC,CE和CF三等分∠ACB,∠A=60°,求∠BEC和∠BFC的度數(shù).
【答案】100°,140°
【解析】
延長BE交AC于G,由三角形外角性質(zhì),可得∠BEC=∠BGC+∠ACE,∠BGC=∠A+∠ABE,再根據(jù)BE和BF三等分∠ABC,CE和CF三等分∠ACB,即可得到∠BEC和∠BFC的度數(shù).
如圖,延長BE交AC于G,
由三角形外角性質(zhì),可得∠BEC=∠BGC+∠ACE,∠BGC=∠A+∠ABE,
∵BE和BF三等分∠ABC,CE和CF三等分∠ACB,
∴∠ABE=∠ABC,∠ACE=∠ACB,
又∵∠ABC+∠ACB=180°﹣∠A,
∴∠BEC=∠A+∠ABC+∠ACB=∠A+(180°﹣∠A)=60°+∠A,
當(dāng)∠A=60°時(shí),∠BEC=60°+×60°=100°,
同理可得,∠BFC=∠A+(180°﹣∠A)=120°+∠A=120°+×60°=140°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一動點(diǎn)從原點(diǎn)出發(fā),按向上.向右.向下.向右的方向依次平移,每次移動一個單位,得到(0,1),(1,1),(1,0),(2,0),…那么點(diǎn)的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c所表示的數(shù)在數(shù)軸上的位置如圖所示:
(1)化簡:│a-1│-│c+b│+│b-1│;
(2)若a+b+c=0,且b與-1的距離和c與-1的距離相等,求:-a2+2b-c-(a-4c-b)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】織金縣某中學(xué)300名學(xué)生參加植樹活動,要求每人植4~7棵,活動結(jié)束后隨機(jī)抽查了若干名學(xué)生每人的植樹量,并分為四種類型,A:4棵;B:5棵;C:6棵;D:7棵.將各類的人數(shù)繪制成扇形圖(如圖1)和條形圖(如圖2).
回答下列問題:
(1)在這次調(diào)查中D類型有多少名學(xué)生?
(2)寫出被調(diào)查學(xué)生每人植樹量的眾數(shù)、中位數(shù);
(3)求被調(diào)查學(xué)生每人植樹量的平均數(shù),并估計(jì)這300名學(xué)生共植樹多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同學(xué)們都知道:|5﹣(﹣2)|表示5與﹣2之差的絕對值,實(shí)際上也可理解為5與﹣2兩數(shù)在數(shù)軸上所對應(yīng)的兩點(diǎn)之間的距離.請你借助數(shù)軸進(jìn)行以下探索:
(1)數(shù)軸上表示5與﹣2兩點(diǎn)之間的距離是 ;
(2)數(shù)軸上表示x與2的兩點(diǎn)之間的距離可以表示為 ;
(3)同理|x+3|+|x﹣1|表示數(shù)軸上有理數(shù)x所對應(yīng)的點(diǎn)到﹣3和1所對應(yīng)的點(diǎn)的距離之和,請你找出所有符合條件的整數(shù)x,使得|x+3|+|x﹣1|=4,這樣的整數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)綠色出行號召,越來越多市民選擇租用共享單車出行,已知某共享單車公司為市民提供了手機(jī)支付和會員卡支付兩種支付方式,如圖描述了兩種方式應(yīng)支付金額y(元)與騎行時(shí)間x(時(shí))之間的函數(shù)關(guān)系,根據(jù)圖象回答下列問題:
(1)求手機(jī)支付金額y(元)與騎行時(shí)間x(時(shí))的函數(shù)關(guān)系式;
(2)李老師經(jīng)常騎行共享單車,請根據(jù)不同的騎行時(shí)間幫他確定選擇哪種支付方式比較合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l1:y=2x+4與y軸交于A點(diǎn),與x軸交于點(diǎn)B,經(jīng)過A點(diǎn)的直線l2與直線l1所夾的銳角為45°.
(1)過點(diǎn)B作CB⊥AB,交l2于C,求點(diǎn)C的坐標(biāo).
(2)求l2的函數(shù)解析式.
(3)在直線l1上存在點(diǎn)M,直線l2上存在點(diǎn)N,使得點(diǎn)A、O、M、N四點(diǎn)組成的四邊形是平行四邊形,請直接寫出點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=﹣x2+bx+3的圖象與x軸交于A、C兩點(diǎn)(點(diǎn)A在點(diǎn)C的左側(cè)),與y軸交于點(diǎn)B,且OA=OB.
(1)求線段AC的長度;
(2)若點(diǎn)P在拋物線上,點(diǎn)P位于第二象限,過P作PQ⊥AB,垂足為Q.已知PQ=,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,AE是弦,C是劣弧AE的中點(diǎn),過C作CD⊥AB于點(diǎn)D,CD交AE于點(diǎn)F,過C作CG∥AE交BA的延長線于點(diǎn)G.
(1)求證:CG是⊙O的切線.
(2)求證:AF=CF.
(3)若∠EAB=30°,CF=2,求GA的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com