【題目】如圖,在Rt△ABC中,∠ABC=90°,C(0,﹣4),AC=3AD,點(diǎn)A在反比例函數(shù)y=圖象上,且y軸平分∠ACB,則k=_.
【答案】
【解析】
作x軸的垂線,構(gòu)造相似三角形,利用AC=3AD和C(0,4)可以求出A的縱坐標(biāo),再利用三角形相似,設(shè)未知數(shù),由相似三角形對應(yīng)邊成比例,列出方程,求出待定未知數(shù),從而確定點(diǎn)A的橫坐標(biāo),進(jìn)而確定k的值.
解:∵y軸平分∠ACB,
∴∠BCO=∠DCO,OC=OC,∠BOC=∠DOC
∴△BOC≌△DOC
∴OB=OD,∠BCO=∠DCO
過點(diǎn)A作AE⊥x軸于點(diǎn)E,
∴∠AED=∠COD=90°,∠ADE=∠ODC
∴△ADE∽△ODC
∴
∴AE=,DO=2DE
∵∠ABC=90°,
∴∠ABD+∠CBD=90°,∠BCO+∠CBD=90°
∴∠ABD=∠BCO=∠DCO,∠AEB=∠DOC=90°
∴△AEB∽△DOC
∴
設(shè)DE=n,OD=2n,BE=5n
∴
∴
∵
∴k=xy= OE·AE =
故答案為:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△OAB中,頂點(diǎn)O(0,0),A(﹣2,3),B(2,3),將△OAB與正方形ABCD組成的圖形繞點(diǎn)O順時針旋轉(zhuǎn),每次旋轉(zhuǎn)90°,則第2020次旋轉(zhuǎn)結(jié)束時,點(diǎn)D的坐標(biāo)為( 。
A.(﹣2,7)B.(7,2)C.(2,﹣7)D.(﹣7,﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,(b為常數(shù))的圖象與x軸,y軸分別交于點(diǎn)A,B與反比例函數(shù)(x>0)的圖象交于點(diǎn)C.若ACBC=4,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,矩形ABCD的邊AB:BC=3:2,點(diǎn)A(3,0),B(0,6)分別在x軸,y軸上,反比例函數(shù)(x>0)的圖像經(jīng)過點(diǎn)D,則值為( )
A. ﹣14 B. 14 C. 7 D. ﹣7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,AB是⊙O的一條弦,AP是⊙O的切線,作BM=AB并與AP交于點(diǎn)M,延長MB交AC于點(diǎn)E,交⊙O于點(diǎn)D,連接AD.
(1)求證:AB=BE;
(2)若⊙O的半徑R=2.5,MB=3,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是的內(nèi)接四邊形,為直徑, ,,垂足為.
(1)求證:平分;
(2)判斷直線與的位置關(guān)系,并說明理由;
(3)若,,求陰影部分的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一些半徑相同的小圓按如圖所示的規(guī)律擺放:第1個圖形有6個小圓,第2個圖形有10個小圓,第3個圖形有16個小圓,第4個圖形有24個小圓,…,依次規(guī)律,第6個圖形有( 。﹤小圓.
A.34B.40C.46D.60
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線:與軸交于點(diǎn)、兩點(diǎn),與軸交于點(diǎn),且.
(1)直接寫出拋物線的解析式;
(2)如圖1,點(diǎn)在軸左側(cè)的拋物線上,將點(diǎn)先向右平移4個單位長度,再向下平移個單位長度,得到的對應(yīng)點(diǎn)恰好落在拋物線上,若,求點(diǎn)的坐標(biāo);
(3)如圖2,將拋物線向上平移2個單位長度得到拋物線,一次函數(shù)的圖象與拋物線只有一個公共點(diǎn),與軸交于點(diǎn),探究:軸上是否存在定點(diǎn)滿足?若存在,求出點(diǎn)的坐標(biāo);否則,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A(a,1),B(b,3)都在雙曲線上,點(diǎn)P,Q分別是x軸,y軸上的動點(diǎn),則四邊形ABQP周長的最小值為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com