【題目】已知點E,F(xiàn),G,H分別是四邊形ABCD的邊AB,BC,CD,DA的中點,若AC⊥BD,且AC≠BD,則四邊形EFGH的形狀是(填“梯形”“矩形”或“菱形”)

【答案】矩形
【解析】解:四邊形EFGH的形狀是矩形,理由為: 根據(jù)題意畫出圖形,如圖所示:
∵點E,F(xiàn),G,H分別是四邊形ABCD的邊AB,BC,CD,DA的中點,
∴EH為△ABD的中位線,F(xiàn)G為△BCD的中位線,
∴EH= BD,EH∥BD,F(xiàn)G= BD,F(xiàn)G∥BD,
∴EH=FG,EH∥FG,
∴四邊形EFGH為平行四邊形,
又HG為△ACD的中位線,
∴HG∥AC,又HE∥BD,
∴四邊形HMON為平行四邊形,
又AC⊥BD,即∠AOD=90°,
∴四邊形HMON為矩形,
∴∠EHG=90°,
∴四邊形EFGH為矩形.
所以答案是:矩形.

【考點精析】掌握三角形中位線定理和矩形的判定方法是解答本題的根本,需要知道連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半;有一個角是直角的平行四邊形叫做矩形;有三個角是直角的四邊形是矩形;兩條對角線相等的平行四邊形是矩形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某景區(qū)7月1日﹣7月7日一周天氣預報如圖,小麗打算選擇這期間的一天或兩天去該景區(qū)旅游,求下列事件的概率:

(1)隨機選擇一天,恰好天氣預報是晴;
(2)隨機選擇連續(xù)的兩天,恰好天氣預報都是晴.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四張背面完全相同的紙牌A、B、C、D,其中正面分別畫有四個不同的幾何圖形(如圖),小華將這4張紙牌背面朝上洗勻后摸出一張,放回洗勻后再摸一張.

(1)用樹狀圖(或列表法)表示兩次摸牌所有可能出現(xiàn)的結果(紙牌可用A、B、C、D表示);
(2)求摸出兩張紙牌牌面上所畫幾何圖形,既是軸對稱圖形又是中心對稱圖形的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,E是CD的中點,點F在BC上,且FC= BC.圖中相似三角形共有(
A.1對
B.2對
C.3對
D.4對

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了倡導節(jié)能低碳的生活,某公司對集體宿舍用電收費作如下規(guī)定:一間宿舍一個月用電量不超過a千瓦時,則一個月的電費為20元;若超過a千瓦時,則除了交20元外,超過部分每千瓦時要交 元.某宿舍3月份用電80千瓦時,交電費35元;4月份用電45千瓦時,交電費20元.
(1)求a的值;
(2)若該宿舍5月份交電費45元,那么該宿舍當月用電量為多少千瓦時?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】26.如圖,在四邊形ABCD中,∠DAB=∠ABC=90°,CD與以AB為直徑的半圓相切于點E,EF⊥AB于點F,EF交BD于點G,設AD=a,BC=b.
(1)求CD的長度(用a,b表示);
(2)求EG的長度(用a,b表示);
(3)試判斷EG與FG是否相等,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】
(1)解方程:x2﹣4x+2=0
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)y1=kx+b圖象與x軸相交于點A,與反比例函數(shù) 的圖象相交于B(﹣1,5)、C( ,d)兩點.點P(m,n)是一次函數(shù)y1=kx+b的圖象上的動點.

(1)求k、b的值;
(2)設﹣1<m< ,過點P作x軸的平行線與函數(shù) 的圖象相交于點D.試問△PAD的面積是否存在最大值?若存在,請求出面積的最大值及此時點P的坐標;若不存在,請說明理由;
(3)設m=1﹣a,如果在兩個實數(shù)m與n之間(不包括m和n)有且只有一個整數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁4名同學進行一次羽毛球單打比賽,要從中選出2名同學打第一場比賽,求下列事件的概率:
(1)已確定甲打第一場,再從其余3名同學中隨機選取1名,恰好選中乙同學;
(2)隨機選取2名同學,其中有乙同學.

查看答案和解析>>

同步練習冊答案