【題目】將三角形紙片ABC沿DE折疊,其中ABAC.

(1)如圖①,當(dāng)點(diǎn)C落在BC邊上的點(diǎn)F處時(shí),ABDF是否平行?請說明理由;

(2)如圖②,當(dāng)點(diǎn)C落在四邊形ABED內(nèi)部的點(diǎn)G處時(shí),探索∠B與∠1+∠2之間的數(shù)量關(guān)系,并說明理由.

【答案】(1)ABDF.理由見解析;(2)1+∠22B.理由見解析

【解析】

1ABDF平行.根據(jù)翻折可得出∠DFC=C,結(jié)合∠B=C即可得出∠B=DFC,從而證出ABDF

2)連接GC,由翻折可得出∠DGE=ACB,再根據(jù)三角形外角的性質(zhì)得出∠1=DGC+DCG,∠2=EGC+ECG,通過角的運(yùn)算即可得出∠1+2=2B.

解:(1ABDF,理由如下:由翻折得∠DFC=∠C,

∵∠B=∠C,∴∠B=∠DFC,∴ABDF;

2)∠1+∠22B.理由如下:連接GC,由翻折得∠DGE=∠ACB,

∵∠1180°-∠GDC=∠DGC+∠DCG

2180°-∠GEC=∠EGC+∠ECG,

∴∠1+∠2=∠DGC+∠DCG+∠EGC+∠ECG(DGC+∠EGC)(DCG+∠ECG)=∠DGE+∠DCE2ACB.∵∠B=∠ACB

∴∠1+∠22B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)袋子中裝有除顏色外都相同的6個(gè)紅球和4個(gè)黃球,從袋子中任意摸出一個(gè)球,請問:

(1)“摸出的球是白球是什么事件?

(2)“摸出的球是紅球是什么事件?

(3)“摸出的球不是綠球是什么事件?

(4)摸出哪種顏色球的可能性最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中A(a,0),B(b,0)D(0,d),以AB,AD為鄰邊做平行四邊形ABCD,其中ab,d滿足

1)求出C的坐標(biāo),及平行四邊形ABCD的面積;

2)如圖2,線段BC的中垂線交y軸與點(diǎn)E,FAD的中點(diǎn),試判斷∠EFB的大小,并說明理由;

3)如圖3,過點(diǎn)CCGx軸與點(diǎn)GK為線段DG上的一點(diǎn),KHCKOG延長線與點(diǎn)H,且∠DKC=3KHG,請求出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某體育用品制造公司通過互聯(lián)網(wǎng)銷售某品牌排球,第一周的總銷售額為3000元,第二周的總銷售額為3520元,第二周比第一周多售出13個(gè)排球.

1)求每個(gè)排球的售價(jià);

2)該公司在第三周將每個(gè)排球的售價(jià)降低了(其中),并預(yù)計(jì)第三周能售出120個(gè)排球.恰逢中國女排奪冠,極大地激發(fā)了廣大青少年積極參與排球運(yùn)動的熱情,該款排球在第三周的銷量比預(yù)計(jì)的120個(gè)還多了.已知每個(gè)排球的成本為16元,該公司第三周銷售排球的總利潤為4320元,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小強(qiáng)為了測量一幢高樓的高AB,在旗桿CD與樓之間選定一點(diǎn)P.測得旗桿頂C的視線PC與地面夾角∠DPC36°,測得樓頂A的視線PA與地面夾角∠APB54°,測得P到樓底距離PB與旗桿高度都為10米,測得旗桿與樓之間的距離DB36米,據(jù)此小強(qiáng)計(jì)算出了樓高,求樓高AB是多少米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場設(shè)立了一個(gè)可以自由轉(zhuǎn)動的轉(zhuǎn)盤,并做如下規(guī)定:顧客購物80元以上就獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機(jī)會,當(dāng)轉(zhuǎn)盤停止時(shí),指針落在哪一區(qū)域就可以獲得相應(yīng)的獎(jiǎng)品,下表是活動進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù).

(1)計(jì)算并完成表格;

(2)請估計(jì),當(dāng)n很大時(shí),頻率將會接近多少?

(3)假如你去轉(zhuǎn)動該盤一次,你獲得洗衣粉的概率約是多少?

(4)在該轉(zhuǎn)盤中,表示洗衣粉區(qū)域的扇形的圓心角約是多少?(精確到1°)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,點(diǎn)DBC的中點(diǎn),點(diǎn)EAD

求證:(1)ABD≌△ACD;

(2)BE=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于的一元二次方程的實(shí)數(shù)解是

(1)的取值范圍;

(2)如果為整數(shù),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在社會主義新農(nóng)村建設(shè)中,衢州某鄉(xiāng)鎮(zhèn)決定對A、B兩村之間的公路進(jìn)行改造,并有甲工程隊(duì)從A村向B村方向修筑,乙工程隊(duì)從B村向A村方向修筑.已知甲工程隊(duì)先施工3天,乙工程隊(duì)再開始施工.乙工程隊(duì)施工幾天后因另有任務(wù)提前離開,余下的任務(wù)有甲工程隊(duì)單獨(dú)完成,直到公路修通.下圖是甲乙兩個(gè)工程隊(duì)修公路的長度y(米)與施工時(shí)間x(天)之間的函數(shù)圖象,請根據(jù)圖象所提供的信息解答下列問題:

(1)乙工程隊(duì)每天修公路多少米?

(2)分別求甲、乙工程隊(duì)修公路的長度y(米)與施工時(shí)間x(天)之間的函數(shù)關(guān)系式.

(3)若該項(xiàng)工程由甲、乙兩工程隊(duì)一直合作施工,需幾天完成?

查看答案和解析>>

同步練習(xí)冊答案