如圖,四邊形ABCD是正方形,E是AB延長線上一點,且BE=DB,則∠DEB=   
【答案】分析:因為BE=DB,所以∠BDE=∠BED,根據(jù)三角形內(nèi)角和外角的關系,∠DBA=∠E+∠BDE=2∠E.又因為DB是正方形ABCD的對角線,所以∠ABD=45°,則∠E=×45°=22.5°.
解答:解:∵BE=DB,
∴∠BDE=∠BED,
∵∠DBA=∠BDE+∠BED=45°
∴∠E=×45°=22.5°.
故答案為22.5.
點評:根據(jù)正方形的性質(zhì)和三角形內(nèi)角和外角的關系來求解是解答此題的關鍵,此題基礎題,比較簡單.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設AC=2a,BD=2b,請推導這個四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案