【題目】(題文)如圖某數(shù)學(xué)活動小組為測量學(xué)校旗桿AB的高度,從旗桿正前方2m處的點C出發(fā),沿斜面坡度i=1的斜坡CD前進4m到達點D在點D處安置測角儀,測得旗桿頂部A的仰角為37°,量得儀器的高DE1.5 m.已知A,BC,D,E在同一平面內(nèi),ABBC,ABDE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈,計算結(jié)果保留根號)

【答案】(3+3.5)m.

【解析】試題延長EDBC延長線于點F,則CFD=90°,RtCDF中求得CF、DF的長,作EGAB,可得GEGB的長,再求出AG的長,即可得答案.

試題解析:解:如圖,延長EDBC延長線于點F,則CFD=90°,∵tan∠DCF=i==,∴∠DCF=30°,∵CD=4,∴DF=CD=2,CF=CDcos∠DCF=4×=,∴BF=BC+CF=+=,過點EEGAB于點G,則GE=BF=GB=EF=ED+DF=1.5+2=3.5,又∵∠AED=37°,∴AG=GEtan∠AEG=tan37°,則AB=AG+BG=tan37°+3.5=,故旗桿AB的高度為()米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)完《平面直角坐標系》和《一次函數(shù)》這兩章后,老師布置了這樣一道思考題:已知:如圖,在長方形中,,點的中點,相交于點.求的面積.小明同學(xué)應(yīng)用所學(xué)知識,順利地解決了此題,他的思路是這樣的:以所在的直線為軸,以所在的直線為軸建立適當?shù)钠矫嬷苯亲鴺讼,寫出圖中一些點坐標.根據(jù)一次函數(shù)的知識求出點的坐標,從而求得的面積.請你按照小明的思路解決這道思考題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,寬為20米,長為32米的長方形地面上,修筑寬度為x米的兩條互相垂直的小路,余下的部分作為耕地,如果要在耕地上鋪上草皮,選用草皮的價格是每平米a元,

1)求買草皮至少需要多少元?(用含a,x的式子表示)

2)計算a40,x2時,草皮的費用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個四位數(shù),記千位上和百位上的數(shù)字之和為,十位上和個位上的數(shù)字之和為,如果,那么稱這個四位數(shù)為和平數(shù)

例如:1423,,因為,所以1423和平數(shù)

1)直接寫出:最小的和平數(shù)  ,最大的和平數(shù)   ;

2)將一個和平數(shù)的個位上與十位上的數(shù)字交換位置,同時,將百位上與千位上的數(shù)字交換位置,稱交換前后的這兩個和平數(shù)為一組相關(guān)和平數(shù)

例如:1423與4132為一組“相關(guān)和平數(shù)”

求證:任意的一組“相關(guān)和平數(shù)”之和是1111的倍數(shù).

3)求個位上的數(shù)字是千位上的數(shù)字的兩倍且百位上的數(shù)字與十位上的數(shù)字之和是12的倍數(shù)的所有和平數(shù);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,點C是直徑AB延長線上一點,過點C作⊙O的切線,切點為D,連結(jié)BD.

(1)求證:∠A=∠BDC;

(2)若CM平分∠ACD,且分別交AD、BD于點M、N,當DM=1時,求MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點P是正方形ABCD內(nèi)部一點,且△PAB是正三角形,則∠CPD_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在⊙O中,AB= 4,AC是⊙O的直徑,AC⊥BD于F,∠A=30°.

⑴求圖中陰影部分的面積;

⑵若用陰影扇形OBD圍成一個圓錐側(cè)面,請求出這個圓錐底面圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的有( 。

①如果等腰三角形的底角為15°,那么腰上的高是腰長的一半;

②三角形至少有一個內(nèi)角不大于60°;

③連結(jié)任意四邊形各邊中點形成的新四邊形是平行四邊形;

④十邊形內(nèi)角和為1800°

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個四邊形的一條對角線把四邊形分成兩個等腰三角形,我們把這條對角線叫這個四邊形的和諧線,這個四邊形叫做和諧四邊形.如菱形就是和諧四邊形.

1)如圖1,在梯形ABCD中,AD∥BC∠BAD=120°,∠C=75°,BD平分∠ABC.求證:BD是梯形ABCD的和諧線;

2)如圖2,在12×16的網(wǎng)格圖上(每個小正方形的邊長為1)有一個扇形BAC,點ABC均在格點上,請在答題卷給出的兩個網(wǎng)格圖上各找一個點D,使得以AB、C、D為頂點的四邊形的兩條對角線都是和諧線,并畫出相應(yīng)的和諧四邊形;

3)四邊形ABCD中,AB=AD=BC,∠BAD=90°,AC是四邊形ABCD的和諧線,求∠BCD的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案