【題目】如圖,已知線段OA交⊙O于點B,且OB=AB,點P是⊙O上的一個動點,那么∠OAP的最大值是( )
A.30°
B.45°
C.60°
D.90°
【答案】A
【解析】解:根據(jù)題意知,當∠OAP取最大值時,OP⊥AP;
在Rt△AOP中,∵OP=OB,OB=AB,
∴OA=2OP,
∴∠OAP=30°.
故選A.
【考點精析】本題主要考查了直線與圓的三種位置關(guān)系和切線的性質(zhì)定理的相關(guān)知識點,需要掌握直線與圓有三種位置關(guān)系:無公共點為相離;有兩個公共點為相交,這條直線叫做圓的割線;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點;切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,在△ABC中,D是BC的中點,DE⊥BC,垂足為D,交AB于點E,且BE2-EA2=AC2,
(1)求證:∠A=90°.
(2)若DE=3,BD=4,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題背景:(1)已知A(1,2),B(3,2),C(1,﹣1),D(﹣3,﹣3).在平面直角坐標系中描出這幾個點,并分別找到線段AB和CD中點P1、P2,然后寫出它們的坐標,則P1 ,P2 .
探究發(fā)現(xiàn):(2)結(jié)合上述計算結(jié)果,你能發(fā)現(xiàn)若線段的兩個端點的坐標分別為(x1,y1),(x2,y2),則線段的中點坐標為 .
拓展應用:(3)利用上述規(guī)律解決下列問題:已知三點E(﹣1,2),F(3,1),G(1,4),第四個點H(x,y)與點E、點F、點G中的一個點構(gòu)成的線段的中點與另外兩個端點構(gòu)成的線段的中點重合,求點H的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把直角梯形ABCD沿AD方向平移到梯形EFGH的位置,HG=24cm,MG=8cm,MC=6cm,則陰影部分的面積是____cm2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b與反比例函數(shù)y= (m≠0)的圖象交于點A(3,1),且過點B(0,﹣2).
(1)求反比例函數(shù)和一次函數(shù)的表達式;
(2)如果點P是x軸上一點,且△ABP的面積是3,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,給出了下列三個論斷:①對角線AC平分∠BAD;②CD=BC;③∠D+∠B=180°.在上述三個論斷中,若以其中兩個論斷作為條件,另外一個論斷作為結(jié)論,則可以得出______個正確的命題.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1的正方形網(wǎng)格中,△ABC的頂點均在格點上,點A、B的坐標分別是A(5,3)、B(5,1).
(1)在圖中標出△ABC外心D的位置,并直接寫出它的坐標;
(2)判斷△ABC的外接圓D與x軸、y軸的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0)和B(3,0)兩點,與y軸交于點C,對稱軸與x軸交于點E,點D為頂點,連接BD、CD、BC.
(1)求二次函數(shù)解析式及頂點坐標;
(2)點P為線段BD上一點,若S△BCP= ,求點P的坐標;
(3)點M為拋物線上一點,作MN⊥CD,交直線CD于點N,若∠CMN=∠BDE,請直接寫出所有符合條件的點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列方程或方程組解應用題:
根據(jù)城市規(guī)劃設計,某市工程隊準備為該城市修建一條長4800米的公路.鋪設600m后,為了盡量減少施工對城市交通造成的影響,該工程隊增加人力,實際每天修建公路的長度是原計劃的2倍,結(jié)果9天完成任務,該工程隊原計劃每天鋪設公路多少米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com