【題目】在△ABC中,AB=15,AC=13,高AD=12,則BC的長(zhǎng)是____.
【答案】14或4
【解析】試題分析:分兩種情況討論:銳角三角形和鈍角三角形,根據(jù)勾股定理求得BD,CD,再由圖形求出BC,在銳角三角形中,BC=BD+CD,在鈍角三角形中,BC=CD-BD.
試題解析:(1)如圖,
銳角△ABC中,AB=15,AC=13,BC邊上高AD=12,
在Rt△ABD中AB=15,AD=12,由勾股定理得:
BD2=AB2-AD2=152-122=81,
∴BD=9,
在Rt△ACD中AC=13,AD=12,由勾股定理得
CD2=AC2-AD2=132-122=25,
∴CD=5,
∴BC的長(zhǎng)為BD+DC=9+5=14;
(2)如圖:
鈍角△ABC中,AB=15,AC=13,BC邊上高AD=12,
在Rt△ABD中AB=15,AD=12,由勾股定理得:
BD2=AB2-AD2=152-122=81,
∴BD=9,
在Rt△ACD中AC=13,AD=12,由勾股定理得:
CD2=AC2-AD2=132-122=25,
∴CD=5,
∴BC的長(zhǎng)為DC-BD=9-5=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個(gè)整數(shù)的和是60,它們的最小公倍數(shù)是273,則這兩個(gè)整數(shù)的乘積是( )
A. 273 B. 819 C. 1911 D. 3549
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系內(nèi)有一點(diǎn)A(a,﹣a),若a>0,則點(diǎn)A位于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的個(gè)數(shù)是( )
(1)直徑是圓中最大的弦.
(2)長(zhǎng)度相等的兩條弧一定是等。
(3)半徑相等的兩個(gè)圓是等圓.
(4)面積相等的兩個(gè)圓是等圓.
(5)同一條弦所對(duì)的兩條弧一定是等。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,∠BAC= 90°,AB=AC,四邊形ADEF是正方形,點(diǎn)B、C分別在邊AD、AF上,此時(shí)BD=CF,BD⊥CF成立.
(1)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°<θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.
(2)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長(zhǎng)DB交CF于點(diǎn)H.
①求證:BD⊥CF;
②當(dāng)AB=2,AD=3時(shí),求線段DH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一件工藝品進(jìn)價(jià)100元,標(biāo)價(jià)135元售出,每天可售出100件,根據(jù)銷售統(tǒng)計(jì),一件工藝品每降低1元出售,則每天可多售出4件,要使顧客盡量得到優(yōu)惠,且每天獲得的利潤(rùn)為3596,每件工藝品需降價(jià)______元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若拋物線y=ax2+bx+c的頂點(diǎn)是A(2,1),且經(jīng)過點(diǎn)B(1,0),則拋物線的函數(shù)關(guān)系式為 ▲ .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com