【題目】某人開車從家出發(fā)去植物園游玩,設汽車行駛的路程為S(千米),所用時間為t(分),St之間的函數(shù)關(guān)系如圖所示.若他早上8點從家出發(fā),汽車在途中停車加油一次,則下列描述中,不正確的是( )

A.汽車行駛到一半路程時,停車加油用時10分鐘

B.汽車一共行駛了60千米的路程,上午95分到達植物園

C.加油后汽車行駛的速度為60千米/

D.加油后汽車行駛的速度比加油前汽車行駛的速度快

【答案】D

【解析】

對照圖象信息逐項分析即可.

解:A.汽車行駛30千米時,停車加油時間為第25分至第35分,該選項正確;

BS=60千米,8點出發(fā),用時65分鐘,95分到達,該選項正確;

C.加油后速度,該選項正確;

D.加油后速度

加油前速度

,該選項錯誤.

故選:D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線x軸交于點A,與y軸交于點B,直線x軸交于點C

1)求點B的坐標;

2)橫、縱坐標都是整數(shù)的點叫做整點.記線段圍成的區(qū)域(不含邊界)為G

①當時,結(jié)合函數(shù)圖象,求區(qū)域G內(nèi)整點的個數(shù);

②若區(qū)域G內(nèi)恰有2個整點,直接寫出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】[閱讀理解]

時,因為所以從而(當且僅當時取等號).由此可知,在的條件下,當時,代數(shù)式有最小值為

[實踐應用]

1)在的條件下,當 時,有最小值,且最小值為

2)設,求的最小值,并指出當取得該最小值時對應的的值;

[拓展延伸]

在平面直角坐標系中,點.點是函數(shù)在第一象限內(nèi)圖象上的一個動點,過點作垂直于軸,垂直于軸,垂足分別為點.設點的橫坐標為,四邊形的面積為

3)求之間的函數(shù)關(guān)系式:

4)試判斷當的值最小時,四邊形是何特殊四邊形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某人開車從家出發(fā)去植物園游玩,設汽車行駛的路程為S(千米),所用時間為t(分),St之間的函數(shù)關(guān)系如圖所示.若他早上8點從家出發(fā),汽車在途中停車加油一次,則下列描述中,不正確的是( )

A.汽車行駛到一半路程時,停車加油用時10分鐘

B.汽車一共行駛了60千米的路程,上午95分到達植物園

C.加油后汽車行駛的速度為60千米/

D.加油后汽車行駛的速度比加油前汽車行駛的速度快

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AE平分∠BACBC于點E,DAB邊上一動點,連接CDAE于點P,連接BP.已知AB =6cm,設B,D兩點間的距離為xcm,B,P兩點間的距離為y1cmA,P兩點間的距離為y2cm

小明根據(jù)學習函數(shù)的經(jīng)驗,分別對函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進行了探究.

下面是小明的探究過程,請補充完整:

1)按照下表中自變量x的值進行取點、畫圖、測量,分別得到了y1,x的幾組對應值:

x/cm

0

1

2

3

4

5

6

y1/cm

2.49

2.64

2.88

3.25

3.80

4.65

6.00

y2/cm

4.59

4.24

3.80

3.25

2.51

0.00

2)在同一平面直角坐標系xOy中,描出補全后的表中各組數(shù)值所對應的點(xy1),(x,),并畫出函數(shù)y1,的圖象;

3)結(jié)合函數(shù)圖象,回答下列問題:

①當AP=2BD時,AP的長度約為 cm

②當BP平分∠ABC時,BD的長度約為 cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某醫(yī)院醫(yī)生為了研究該院某種疾病的診斷情況,需要調(diào)查來院就診的病人的兩個生理指標,,于是他分別在這種疾病的患者和非患者中,各隨機選取20人作為調(diào)查對象,將收集到的數(shù)據(jù)整理后,繪制統(tǒng)計圖如下:

“●”表示患者,“▲”表示非患者.

根據(jù)以上信息,回答下列問題:

1)在這40名被調(diào)查者中,

指標低于04的有  人;

20名患者的指標的平均數(shù)記作,方差記作20名非患者的指標的平均數(shù)記作,方差記作,則 (“>”,“=”“<”);

2)來該院就診的500名未患這種疾病的人中,估計指標低于03的大約有 人;

3)若將指標低于03,且指標低于08”作為判斷是否患有這種疾病的依據(jù),則發(fā)生漏判的概率多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AB=2,AD=4,對角線AC,BD相交于點O,且EF,GH分別是AO,BO,CO,DO的中點,則下列說法正確的是(

A.EH=HGB.四邊形EFGH是平行四邊形

C.ACBDD.的面積是的面積的2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某教研機構(gòu)為了了解初中生課外閱讀名著的現(xiàn)狀,隨機抽取了某校50名初中生進行調(diào)查,依據(jù)相關(guān)數(shù)據(jù)繪制成了以下不完整的統(tǒng)計圖,請根據(jù)圖中信息解答下列問題:

類別

重視

一般

不重視

人數(shù)

a

15

b

1)求表格中a,b的值;

2)請補全統(tǒng)計圖;

3)若某校共有初中生2000名,請估計該校重視課外閱讀名著的初中生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,點EBC上,AE=ADDFAE,垂足為F

1)求證.DF=AB

2)若∠FDC=30°,且AB=4,求AD

查看答案和解析>>

同步練習冊答案