【題目】在平面直角坐標(biāo)系中,先將拋物線y2x24x關(guān)于y軸作軸對(duì)稱(chēng)變換,再將所得的拋物線,繞它的頂點(diǎn)旋轉(zhuǎn)180°,那么經(jīng)兩次變換后所得的新拋物線的函數(shù)表達(dá)式為( 。

A.y=﹣2x4xB.y=﹣2x+4x

C.y=﹣2x4x4D.y=﹣2x+4x+4

【答案】C

【解析】

若拋物線關(guān)于y軸作軸對(duì)稱(chēng)變換,則圖象上所有的點(diǎn)縱坐標(biāo)不變橫坐標(biāo)互為相反數(shù);將其繞頂點(diǎn)旋轉(zhuǎn)180°后,開(kāi)口大小和頂點(diǎn)坐標(biāo)都沒(méi)有變化,變化的只是開(kāi)口方向,可據(jù)此得出所求的結(jié)論.

解:拋物線y2x24x關(guān)于y軸作軸對(duì)稱(chēng)變換,

所得拋物線為y2(﹣x24(﹣x)=2x2+4x

y2x2+4x2x+122,

∴繞頂點(diǎn)旋轉(zhuǎn)180°后,得:y=﹣2x+122=﹣2x24x4

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線Lx軸與點(diǎn)A,交y軸與點(diǎn)B,點(diǎn)Cx軸正半軸上,且OC=2,點(diǎn)D在線段AC上,且∠CDB=ABC,過(guò)點(diǎn)CBC的垂線,交BD的延長(zhǎng)線與點(diǎn)E,并聯(lián)結(jié)AE

1)求證:△CDB∽△CBA

2)求點(diǎn)E的坐標(biāo)

3)若點(diǎn)P是直線CE上的一動(dòng)點(diǎn),聯(lián)結(jié)DP若△DEP和△ABC相似,求點(diǎn)P的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果三角形的兩個(gè)內(nèi)角αβ滿(mǎn)足2α+β=90°,那么我們稱(chēng)這樣的三角形為準(zhǔn)互余三角形”.

(1)若ABC準(zhǔn)互余三角形”,C>90°,A=60°,則∠B=   °;

(2)如圖①,在RtABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分線,不難證明ABD準(zhǔn)互余三角形.試問(wèn)在邊BC上是否存在點(diǎn)E(異于點(diǎn)D),使得ABE也是準(zhǔn)互余三角形?若存在,請(qǐng)求出BE的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

(3)如圖②,在四邊形ABCD中,AB=7,CD=12,BDCD,ABD=2BCD,且ABC準(zhǔn)互余三角形,求對(duì)角線AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,ABCD,∠B=90°,AB=1,CD=2,BC=m,點(diǎn)P是邊BC上一動(dòng)點(diǎn),若△PAB與△PCD相似,且滿(mǎn)足條件的點(diǎn)P恰有2個(gè),則m的值為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)準(zhǔn)各去濕地公園開(kāi)展社會(huì)實(shí)踐活動(dòng),學(xué)校給出A:十八彎,B:長(zhǎng)廣溪,C:九里河,D:貢湖灣,共四個(gè)目的地.為了解學(xué)生最喜歡哪一個(gè)目的地,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)査,并將調(diào)査結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)回答下列問(wèn)題:

1)這次被調(diào)査的學(xué)生共有  人.

2)請(qǐng)你將條形統(tǒng)計(jì)圖補(bǔ)充完整.

3)扇形統(tǒng)計(jì)圖中D項(xiàng)目對(duì)立的扇形的圓心角度數(shù)是  °

4)已知該校學(xué)生2400人,請(qǐng)根據(jù)調(diào)査結(jié)果估計(jì)該校最喜歡去長(zhǎng)廣溪濕地公園的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小明為了測(cè)量小河對(duì)岸大樹(shù)BC的高度,他在點(diǎn)A測(cè)得大樹(shù)頂端B的仰角為45°,沿斜坡走3米到達(dá)斜坡上點(diǎn)D,在此處測(cè)得樹(shù)頂端點(diǎn)B的仰角為31°,且斜坡AF的坡比為12

1)求小明從點(diǎn)A到點(diǎn)D的過(guò)程中,他上升的高度;

2)大樹(shù)BC的高度約為多少米?(參考數(shù)據(jù):sin31°≈0.52,cos31°≈0.86tan31°≈0.60

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)AB是方程的一個(gè)根,動(dòng)點(diǎn)PAB3cm/s的速度移動(dòng),動(dòng)直線EF從與AB重合的位置開(kāi)始向上以1cm/s速度移動(dòng)(EFAB),EFADAC、BCEM、F。設(shè)運(yùn)動(dòng)時(shí)間為t.

1)當(dāng)t=1時(shí),四邊形MFBP的面積為 .t表示△APM的面積為 .

2)在某一時(shí)刻t,使△APM與四邊形MFBP的面積相等,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知A(2,0)、B(3,1)、C(1,3).

(1)畫(huà)出ABC沿x軸負(fù)方向平移2個(gè)單位后得到的△A1B1C1,并寫(xiě)出B1的坐標(biāo)   ;

(2)以A1點(diǎn)為旋轉(zhuǎn)中心,將△A1B1C1逆時(shí)針?lè)较蛐D(zhuǎn)90°得△A1B2C2,畫(huà)出△A1B2C2,并寫(xiě)出C2的坐標(biāo)   ;

(3)直接寫(xiě)出過(guò)B、B1、C2三點(diǎn)的圓的圓心坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】九年級(jí)一班開(kāi)展了讀一本好書(shū)的活動(dòng),班委會(huì)對(duì)學(xué)生閱讀書(shū)籍的情況進(jìn)行了問(wèn)卷調(diào)查,問(wèn)卷設(shè)置了小說(shuō)”“戲劇”“散文”“其他四個(gè)類(lèi)型,每位同學(xué)僅選一項(xiàng),根據(jù)調(diào)查結(jié)果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖.

類(lèi)別

頻數(shù)(人數(shù))

頻率

小說(shuō)

0.5

戲劇

4

散文

10

0.25

其他

6

合計(jì)

1

根據(jù)圖表提供的信息,解答下列問(wèn)題:

1)九年級(jí)一班有多少名學(xué)生?

2)請(qǐng)補(bǔ)全頻數(shù)分布表,并求出扇形統(tǒng)計(jì)圖中其他類(lèi)所占的百分比;

3)在調(diào)查問(wèn)卷中,甲、乙、丙、丁四位同學(xué)選擇了戲劇類(lèi),現(xiàn)從以上四位同學(xué)中任意選出 2 名同學(xué)參加學(xué)校的戲劇興趣小組,請(qǐng)用畫(huà)樹(shù)狀圖或列表法的方法,求選取的 2 人恰好是乙和丙的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案