(2013•常德)如圖,已知⊙O是等腰直角三角形ADE的外接圓,∠ADE=90°,延長ED到C使DC=AD,以AD,DC為鄰邊作正方形ABCD,連接AC,連接BE交AC于點H.求證:
(1)AC是⊙O的切線.
(2)HC=2AH.
分析:(1)根據(jù)圓周角定理由∠ADE=90°得AE為⊙O的直徑,再根據(jù)等腰直角三角形得到∠EAD=45°,根據(jù)正方形得到∠DAC=45°,則∠EAC=90°,然后根據(jù)切線的判定定理即可得到結(jié)論;
(2)由AB∥CD得△ABH∽△CEH,則AH:CH=AB:EC,根據(jù)等腰直角三角形和正方形的性質(zhì)易得EC=2AB,則AH:CH=1:2.
解答:證明:(1)∵∠ADE=90°,
∴AE為⊙O的直徑,
∵△ADE為等腰直角三角形,
∴∠EAD=45°,
∵四邊形ABCD為正方形,
∴∠DAC=45°,
∴∠EAC=45°+45°=90°,
∴AC⊥AE,
∴AC是⊙O的切線;

(2)∵四邊形ABCD為正方形,
∴AB∥CD,
∴△ABH∽△CEH,
∴AH:CH=AB:EC,
∵△ADE為等腰直角三角形,
∴AD=ED,
而AD=AB=DC,
∴EC=2AB,
∴AH:CH=1:2,
即HC=2AH.
點評:本題考查了切線的判定:過半徑的外端點與半徑垂直的直線為圓的切線.也考查了等腰直角三角形的性質(zhì)、正方形的性質(zhì)以及三角形相似的判定與性質(zhì).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•常德)如圖,在△ABC中,AD是BC邊上的高,AE是BC邊上的中線,∠C=45°,sinB=
13
,AD=1.
(1)求BC的長;
(2)求tan∠DAE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•常德)如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點落在對角線D′處.若AB=3,AD=4,則ED的長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•常德)如圖,已知⊙O是△ABC的外接圓,若∠BOC=100°,則∠BAC=
50°
50°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•常德)如圖,已知二次函數(shù)的圖象過點A(0,-3),B(
3
3
),對稱軸為直線x=-
1
2
,點P是拋物線上的一動點,過點P分別作PM⊥x軸于點M,PN⊥y軸于點N,在四邊形PMON上分別截取PC=
1
3
MP,MD=
1
3
OM,OE=
1
3
ON,NF=
1
3
NP.
(1)求此二次函數(shù)的解析式;
(2)求證:以C、D、E、F為頂點的四邊形CDEF是平行四邊形;
(3)在拋物線上是否存在這樣的點P,使四邊形CDEF為矩形?若存在,請求出所有符合條件的P點坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案