【題目】(1)尺規(guī)作圖:如圖,、是平面上兩個(gè)定點(diǎn),在平面上找一點(diǎn),使構(gòu)成等腰直角三角形,且為直角頂點(diǎn).(畫(huà)出一個(gè)點(diǎn)即可)
(2)在(1)的條件下,若,,則點(diǎn)的坐標(biāo)是________.
【答案】(1)見(jiàn)解析(2)
【解析】
(1)如圖作線段AB的垂直平分線MN交AB于點(diǎn)O,以O為圓心,OA為半徑作⊙O交直線MN于C,C′,連接AC,BC,AC′BC′,點(diǎn)C或C′即為所求;
(2)如圖,由勾股定理求出AB的長(zhǎng),再證明△NAE∽△BAO,求出AN,EN的長(zhǎng),再證明△NCD∽△NBE,求出CD,OD的長(zhǎng),進(jìn)行可求點(diǎn)C的坐標(biāo),同理可求點(diǎn)的坐標(biāo).
(1)如圖作線段AB的垂直平分線MN交AB于點(diǎn)O,以O為圓心,OA為半徑作⊙O交直線MN于C,C′,連接AC,BC,AC′BC′,點(diǎn)C或C′即為所求.
(2)建立平面直角坐標(biāo)系如圖,CD⊥AN,EG⊥OB,,EG⊥OB,垂足分別為D,F,G.
∵A(0,2),B(4,0),
∴OA=2,OB=4,
∴AB=
∵E是圓心,AB是直徑,
∴AE=AB=,CE=
在△AOB和△AEN中,
∵∠NAE=∠BAO,∠AEN=∠AOB,
∴△AOB∽△AEN
∴
∴NE=,CN=,
∴AN=
同理可證,△NCD∽△NAE,
∴,
∴,
∴CD=1,ND=2,
∴OD=5-2-2=1,
∴點(diǎn)C的坐標(biāo)為(1,-1);
∵AO=2,
∴EG=1,
易證△EGH∽△NOH,
∴,即
∴EH=,
∴HG=,OH=
∵ ,EG⊥OB,
∴△EHG∽△,
∴,即,
∴,
∴GF=1,
∴OF=2+1=3,
∴點(diǎn)的坐標(biāo)為(3,3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(提出問(wèn)題)如圖1,在等邊三角形ABC內(nèi)一點(diǎn)P,PA=3,PB=4,PC=5.求∠APB的度數(shù)?小明提供了如下思路:
如圖2,將△APC繞A點(diǎn)順時(shí)針旋轉(zhuǎn)60°至△AP'B ,則AP'=AP=3,P'C=PB=4,∠P'AC=∠PAB ,所以∠P'AC+∠CAP=∠PAC+∠BAP ,即∠P'AP=∠BAC=60° ,所以△AP'P為等邊三角形 ,所以∠A P'P=60° ,
……按照小明的解題思路,
易求得∠APB= ;
(嘗試應(yīng)用)
如圖3,在等邊三角形ABC外一點(diǎn)P,PA=6,PB=10,PC=8.求∠APC的度數(shù)?
(解決問(wèn)題)
如圖4,平面直角坐標(biāo)系xoy中,直線AB的解析式為y=-x+b(b>0),在第一象限內(nèi)一點(diǎn)P,滿足PB:PO:PA=1:2:3,則∠BPO= 度(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,在下列五個(gè)結(jié)論中:
①2a﹣b<0;②abc<0;③a+b+c<0;④a﹣b+c>0;⑤4a+2b+c>0,
錯(cuò)誤的個(gè)數(shù)有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(-1,O)、C(3,0),點(diǎn)B為拋物線頂點(diǎn),直線BD為拋物線的對(duì)稱軸,點(diǎn)D在x軸上,連接AB、BC.
⑴如圖1,若∠ABC=60°,則點(diǎn)B的坐標(biāo)為_(kāi)_____________;
⑵如圖2,若∠ABC=90°,AB與y軸交于點(diǎn)E,連接CE.
①求這條拋物線的解析式;
②點(diǎn)P為第一象限拋物線上一個(gè)動(dòng)點(diǎn),設(shè)△PEC的面積為S,點(diǎn)P的橫坐標(biāo)為m,求S關(guān)于m的函數(shù)關(guān)系武,并求出S的最大值;
③如圖3,連接OB,拋物線上是否存在點(diǎn)Q,使直線QC與直線BC所夾銳角等于∠OBD,若存在請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)經(jīng)過(guò)一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍,實(shí)現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計(jì)了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例,得到如下餅圖:則下面結(jié)論中不正確的是( )
A.新農(nóng)村建設(shè)后,種植收入減少
B.新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍
C.新農(nóng)村建設(shè)后,其他收入增加了一倍以上
D.新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過(guò)了經(jīng)濟(jì)收入的一半
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD外有一點(diǎn)P,P在BC外側(cè),并在平行線AB與CD之間,若PA=,PB=,PC=,則PD=( )
A.2B.C.3D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1為某立交橋示意圖(道路寬度忽略不計(jì)),A﹣F﹣G﹣J為高架,以O為圓心的圓盤B﹣C﹣D﹣E位于高架下方,其中AB,AF,CH,DI,EJ,GJ為直行道,且AB=CH=DI=EJ,AF=GJ,彎道FG是以點(diǎn)O為圓心的圓上的一段。⒔粯虻纳舷赂叨炔詈雎圆挥(jì)),點(diǎn)B,C,D,E是圓盤O的四等分點(diǎn).某日凌晨,有甲、乙、丙、丁四車均以10m/s的速度由A口駛?cè)肓⒔粯,并從出口駛出,若各車到圓心O的距離y(m)與從A口進(jìn)入立交后的時(shí)間x(s)的對(duì)應(yīng)關(guān)系如圖2所示,則下列說(shuō)法錯(cuò)誤的是( 。
A.甲車在立交橋上共行駛10s
B.從I口出立交的車比從H口出立交的車多行駛30m
C.丙、丁兩車均從J口出立交
D.從J口出立交的兩輛車在立交橋行駛的路程相差60m
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年甲、乙兩家科技公司共向國(guó)家繳納利稅3800萬(wàn)元.2019年隨著團(tuán)家“減稅降費(fèi)”政策的實(shí)施,兩家公司的利稅將會(huì)減輕,2019年甲公司的利稅比2018年減少15%,乙公司的利稅比2018年減少20%,預(yù)計(jì)2019兩家公司的利稅共為3000萬(wàn)元,求兩家科技公司2018年的利稅各是多少?設(shè)2018年甲公司的利稅為x萬(wàn)元,乙公司的利稅為y方元,根據(jù)題意列出關(guān)于x,y的方程組為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解陽(yáng)光社區(qū)20~60歲居民購(gòu)物最喜歡的支付方式,該興趣小組對(duì)社區(qū)內(nèi)該年齡段的部分居民展開(kāi)了隨機(jī)問(wèn)卷調(diào)查(每人只能選擇其中一項(xiàng)),并將調(diào)查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:
(1)求參與問(wèn)卷調(diào)查的總?cè)藬?shù).
(2)補(bǔ)全條形統(tǒng)計(jì)圖.
(3)該社區(qū)中20~60歲的居民約5000人,估算這些人中最喜歡微信支付方式的人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com