【題目】如圖所示,有一座拋物線形拱橋,橋下面在正常水位時(shí),AB寬20 m,水位上升到警戒線CD時(shí),CD到拱橋頂E的距離僅為1 m,這時(shí)水面寬度為10 m.
(1)在如圖所示的坐標(biāo)系中求拋物線的解析式;
(2)若洪水到來(lái)時(shí),水位以每小時(shí)0.3 m的速度上升,從正常水位開始,持續(xù)多少小時(shí)到達(dá)警戒線?
【答案】(1)y=-x2(2)從正常水位開始,持續(xù)10小時(shí)到達(dá)警戒線
【解析】
(1)首先設(shè)所求拋物線的解析式為:y=ax2(a≠0),再根據(jù)題意得到C(-5,-1),利用待定系數(shù)法即可得到拋物線解析式;
(2)根據(jù)拋物線解析式計(jì)算出A點(diǎn)坐標(biāo),進(jìn)而得到F點(diǎn)坐標(biāo),然后計(jì)算出EF的長(zhǎng),再算出持續(xù)時(shí)間即可.
解:(1)設(shè)所求拋物線的解析式為y=ax2.
∵CD=10 m,CD到拱橋頂E的距離僅為1 m,
∴C(-5,-1).
把點(diǎn)C的坐標(biāo)代入y=ax2,
得a=-,
故拋物線的解析式為y=-x2.
(2)∵AB寬20 m,
∴可設(shè)A(-10,b).
把點(diǎn)A的坐標(biāo)代入拋物線的解析式y=-x2中,
解得b=-4,
∴點(diǎn)A的坐標(biāo)為(-10,-4).
設(shè)AB與y軸交于點(diǎn)F,則F(0,-4),
∴EF=3 m.
∵水位以每小時(shí)0.3 m的速度上升,
∴3÷0.3=10(時(shí)).
答:從正常水位開始,持續(xù)10小時(shí)到達(dá)警戒線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形OABC是矩形,ADEF是正方形,點(diǎn)A,D在x軸的正半軸,點(diǎn)C在y軸的正半軸上,點(diǎn)F再AB上,點(diǎn)B,E在反比例函數(shù)y=的圖象上,OA=2,OC=6,則正方形ADEF的邊長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知ED為☉O的直徑且ED=4,點(diǎn)A(不與點(diǎn)E,D重合)為☉O上一個(gè)動(dòng)點(diǎn),線段AB經(jīng)過(guò)點(diǎn)E,且EA=EB,F(xiàn)為☉O上一點(diǎn),∠FEB=90°,BF的延長(zhǎng)線交AD的延長(zhǎng)線于點(diǎn)C.
(1)求證:△EFB≌△ADE;
(2)當(dāng)點(diǎn)A在☉O上移動(dòng)時(shí),直接回答四邊形FCDE的最大面積為多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中有,為坐標(biāo)原點(diǎn),,將此三角形繞原點(diǎn)順時(shí)針旋轉(zhuǎn),得到,二次函數(shù)的圖象剛好經(jīng)過(guò)三點(diǎn).
(1)求二次函數(shù)的解析式及頂點(diǎn)的坐標(biāo);
(2)過(guò)定點(diǎn)的直線與二次函數(shù)圖象相交于兩點(diǎn).
①若,求的值;
②證明:無(wú)論為何值,恒為直角三角形;
③當(dāng)直線繞著定點(diǎn)旋轉(zhuǎn)時(shí),外接圓圓心在一條拋物線上運(yùn)動(dòng),直接寫出該拋物線的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在菱形ABCD中,∠ABC=60°,P是射線BD上一動(dòng)點(diǎn),以AP為邊向右側(cè)作等邊△APE,連接CE.
(1)如圖1,當(dāng)點(diǎn)P在菱形ABCD內(nèi)部時(shí),則BP與CE的數(shù)量關(guān)系是 ,CE與AD的位置關(guān)系是 .
(2)如圖2,當(dāng)點(diǎn)P在菱形ABCD外部時(shí),(1)中的結(jié)論是否還成立?若成立,請(qǐng)予以證明;若不成立,請(qǐng)說(shuō)明理由;
(3)如圖2,連接BE,若AB=2,BE=2,求AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,對(duì)稱軸是直線x=-,有下列結(jié)論:(1)ab>0;(2)a+b+c<0;(3)b+2c<0;(4)a-2b+4c>0.其中正確結(jié)論的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD中,E、F分別是正方形AD、CD邊上的點(diǎn),且∠EBF=45°,對(duì)角線AC交BE,BF于M,N,對(duì)于以下結(jié)論,正確的是( )①AE+CF=FE②△ABE≌△BCF③AM2+CN2=MN2④△EFD的周長(zhǎng)等于2AB
A.①②③B.①②④C.①③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠BAC=90°,點(diǎn)B是射線AM上一個(gè)動(dòng)點(diǎn),點(diǎn)C是射線AN上的一個(gè)動(dòng)點(diǎn),且線段BC長(zhǎng)度不變,點(diǎn)D是A關(guān)于直線BC的對(duì)稱點(diǎn),連接AD,若2AD=BC,則∠ABD的度數(shù)是____________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,C是AB上一點(diǎn),點(diǎn)D,E分別在AB兩側(cè),AD∥BE,且AD=BC,BE=AC.
(1)求證:CD=CE;
(2)連接DE,交AB于點(diǎn)F,猜想△BEF的形狀,并給予證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com