【題目】已知點(diǎn)A在x軸負(fù)半軸上,點(diǎn)B在y軸正半軸上,線(xiàn)段OB的長(zhǎng)是方程x2﹣2x﹣8=0的解,tan∠BAO=

(1)求點(diǎn)A的坐標(biāo);

(2)點(diǎn)E在y軸負(fù)半軸上,直線(xiàn)ECAB,交線(xiàn)段AB于點(diǎn)C,交x軸于點(diǎn)D,SDOE=16.若反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)C,求k的值;

(3)在(2)條件下,點(diǎn)M是DO中點(diǎn),點(diǎn)N,P,Q在直線(xiàn)BD或y軸上,是否存在點(diǎn)P,使四邊形MNPQ是矩形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)(-8,0)(2)k=- (3)(﹣1,3)或(0,2)或(0,6)或(2,6)

【解析】

(1)解方程求出OB的長(zhǎng),解直角三角形求出OA即可解決問(wèn)題;
(2)求出直線(xiàn)DE、AB的解析式,構(gòu)建方程組求出點(diǎn)C坐標(biāo)即可;
(3)分四種情形分別求解即可解決問(wèn)題;

(1)∵線(xiàn)段OB的長(zhǎng)是方程x2﹣2x﹣8=0的解,

∴OB=4,

在RtAOB中,tan∠BAO=,

∴OA=8,

∴A(﹣8,0).

(2)∵EC⊥AB,

∴∠ACD=∠AOB=∠DOE=90°,

∴∠OAB+∠ADC=90°,∠DEO+∠ODE=90°,

∵∠ADC=∠ODE,

∴∠OAB=∠DEO,

∴△AOB∽△EOD,

,

OE:OD=OA:OB=2,設(shè)OD=m,則OE=2m,

m2m=16,

m=4或﹣4(舍棄),

∴D(﹣4,0),E(0,﹣8),

直線(xiàn)DE的解析式為y=﹣2x﹣8,

∵A(﹣8,0),B(0,4),

直線(xiàn)AB的解析式為y=x+4,

,解得

∴C(,),

若反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)C,

∴k=﹣

(3)如圖1中,當(dāng)四邊形MNPQ是矩形時(shí),∵OD=OB=4,

∴∠OBD=∠ODB=45°,

∴∠PNB=∠ONM=45°,

∴OM=DM=ON=2,

∴BN=2,PB=PN=,

∴P(﹣1,3).

如圖2中,當(dāng)四邊形MNPQ是矩形時(shí)(點(diǎn)N與原點(diǎn)重合),易證DMQ是等腰直角三角形,OP=MQ=DM=2,P(0,2);

如圖3中,當(dāng)四邊形MNPQ是矩形時(shí),設(shè)PM交BD于R,易知R(﹣1,3),可得P(0,6)

如圖4中,當(dāng)四邊形MNPQ是矩形時(shí),設(shè)PM交y軸于R,易知PR=MR,可得P(2,6).

綜上所述,滿(mǎn)足條件的點(diǎn)P坐標(biāo)為(﹣1,3)或(0,2)或(0,6)或(2,6);

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的半徑是,直線(xiàn)相交于、兩點(diǎn).上的一個(gè)動(dòng)點(diǎn),若,則面積的最大值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的口袋中裝有4個(gè)完全相同的小球,分別標(biāo)有數(shù)字1、23、4,另有一個(gè)可以自由旋轉(zhuǎn)的圓盤(pán).被分成面積相等的3個(gè)扇形區(qū),分別標(biāo)有數(shù)字1、2、3(如圖所示).小穎和小亮想通過(guò)游戲來(lái)決定誰(shuí)代表學(xué)校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個(gè)小球,另一個(gè)人轉(zhuǎn)動(dòng)圓盤(pán),如果所摸球上的數(shù)字與圓盤(pán)上轉(zhuǎn)出數(shù)字之和小于4,那么小穎去;否則小亮去.

1)用樹(shù)狀圖或列表法求出小穎參加比賽的概率;

2)你認(rèn)為該游戲公平嗎?請(qǐng)說(shuō)明理由;若不公平,請(qǐng)修改該游戲規(guī)則,使游戲公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等邊ABC如圖放置,A(1,1),B(3,1),等邊三角形的中心是點(diǎn)D,若將點(diǎn)D繞點(diǎn)A旋轉(zhuǎn)90°后得到點(diǎn)D′,則D′的坐標(biāo)( 。

A. (1+,0) B. (1﹣,0)或(1+,2)

C. (1+,0)或(1﹣,2) D. (2+,0)或(2﹣,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校九年級(jí)數(shù)學(xué)測(cè)試后,為了解學(xué)生學(xué)習(xí)情況,隨機(jī)抽取了九年級(jí)部分學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì),得到相關(guān)的統(tǒng)計(jì)圖表如下.

成績(jī)/

120﹣111

110﹣101

100﹣91

90以下

成績(jī)等級(jí)

A

B

C

D

請(qǐng)根據(jù)以上信息解答下列問(wèn)題:

(1)這次統(tǒng)計(jì)共抽取了   名學(xué)生的數(shù)學(xué)成績(jī),補(bǔ)全頻數(shù)分布直方圖;

(2)若該校九年級(jí)有1000名學(xué)生,請(qǐng)據(jù)此估計(jì)該校九年級(jí)此次數(shù)學(xué)成績(jī)?cè)?/span>B等級(jí)以上(含B等級(jí))的學(xué)生有多少人?

(3)根據(jù)學(xué)習(xí)中存在的問(wèn)題,通過(guò)一段時(shí)間的針對(duì)性復(fù)習(xí)與訓(xùn)練,若A等級(jí)學(xué)生數(shù)可提高40%,B等級(jí)學(xué)生數(shù)可提高10%,請(qǐng)估計(jì)經(jīng)過(guò)訓(xùn)練后九年級(jí)數(shù)學(xué)成績(jī)?cè)?/span>B等級(jí)以上(含B等級(jí))的學(xué)生可達(dá)多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形的內(nèi)接四邊形,,點(diǎn)、分別是弦、上的點(diǎn).

,.求證:的直徑.

,,的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算(每小題4分,共16分)

1

2)已知.求代數(shù)式的值.

3)先化簡(jiǎn),再求值,其中.

4)解分式方程:+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,EAD的中點(diǎn),延長(zhǎng)CE,BA交于點(diǎn)F,連接AC,DF

(1)求證:四邊形ACDF是平行四邊形;

(2)當(dāng)CF平分∠BCD時(shí),寫(xiě)出BCCD的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC各頂點(diǎn)的坐標(biāo)分別為A-32),B-4-3),C-1,-1

1)畫(huà)出△ABC,并畫(huà)出△ABC關(guān)于y軸對(duì)稱(chēng)的△A1B1C1,并寫(xiě)出A的對(duì)應(yīng)點(diǎn)A1的坐標(biāo).

2)尺規(guī)作圖,∠A的角平分線(xiàn)AD,交BC于點(diǎn)D(保留作圖痕跡,不寫(xiě)作法).

查看答案和解析>>

同步練習(xí)冊(cè)答案