【題目】如圖,已知一次函數(shù)y=kx+b的圖象與x軸,y軸分別交于點(diǎn)(2,0),點(diǎn)(0,3).有下列結(jié)論:①圖象經(jīng)過點(diǎn)(1,﹣3);②關(guān)于x的方程kx+b=0的解為x=2;③關(guān)于x的方程kx+b=3的解為x=0;④當(dāng)x>2時(shí),y<0.其中正確的是( 。
A.①②③B.①③④C.②③④D.①②④
【答案】C
【解析】
根據(jù)一次函數(shù)的性質(zhì),一次函數(shù)與一元一次方程的關(guān)系對各小題分析判斷即可得解.
把點(diǎn)(2,0),點(diǎn)(0,3)代入y=kx+b得,,
解得:,
∴一次函數(shù)的解析式為y=﹣x+3,
當(dāng)x=1時(shí),y=,
∴圖象不經(jīng)過點(diǎn)(1,﹣3);故①不符合題意;
由圖象得:關(guān)于x的方程kx+b=0的解為x=2,故②符合題意;
關(guān)于x的方程kx+b=3的解為x=0,故③符合題意;
當(dāng)x>2時(shí),y<0,故④符合題意;
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在等邊△ABC中,點(diǎn)D.E分別在邊BC,AB上,且BD=AE,AD與CE交于點(diǎn)F.
(1)求證:AD=CE
(2)求∠DFC的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角中,,,是邊上的一個(gè)動(dòng)點(diǎn),正方形是一個(gè)邊長為的動(dòng)正方形,其中點(diǎn)在上,,(與分居的兩側(cè)),正方形與的重疊的面積為.
當(dāng)落在上時(shí),求的值;
當(dāng)不在上時(shí),求與的關(guān)系式;
求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2+x+2與x軸相交于點(diǎn)A、B,交y軸于點(diǎn)C,拋物線的對稱軸交x軸于點(diǎn)N,交線段AC于點(diǎn)M.點(diǎn)F是線段MA上的動(dòng)點(diǎn),連接NF,過點(diǎn)N作NG⊥NF交△ABC的邊于點(diǎn)G.
(1)求證:△ABC是直角三角形;
(2)當(dāng)點(diǎn)G在邊BC上時(shí),連接GF,∠NGF的度數(shù)變化嗎?若變化,請說明理由;若不變,請求出∠NGF的正切值;
(3)設(shè)點(diǎn)F的橫坐標(biāo)為n,點(diǎn)G的縱坐標(biāo)為m,在整個(gè)運(yùn)動(dòng)過程中,直接寫出m與n的函數(shù)關(guān)系式,并注明自變量n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)、在反比例函數(shù)上,作等腰直角三角形,點(diǎn)為斜邊的中點(diǎn),連并延長交軸于點(diǎn).
求反比例函數(shù)的解析式;
的面積是多少?
若點(diǎn)在直線上,請求出直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一列快車從甲地勻速駛往乙地,一列慢車從乙地勻速駛往甲地.設(shè)先發(fā)車輛行駛的時(shí)間為xh,兩車之間的距離為ykm,圖中的折線表示y與x之間的函數(shù)關(guān)系,根據(jù)圖象解決以下問題:
(1)慢車的速度為_____km/h,快車的速度為_____km/h;
(2)解釋圖中點(diǎn)C的實(shí)際意義并求出點(diǎn)C的坐標(biāo);
(3)求當(dāng)x為多少時(shí),兩車之間的距離為500km.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】結(jié)果如此巧合!
下面是小穎對一道題目的解答.
題目:如圖,Rt△ABC的內(nèi)切圓與斜邊AB相切于點(diǎn)D,AD=3,BD=4,求△ABC的面積.
解:設(shè)△ABC的內(nèi)切圓分別與AC、BC相切于點(diǎn)E、F,CE的長為x.
根據(jù)切線長定理,得AE=AD=3,BF=BD=4,CF=CE=x.
根據(jù)勾股定理,得(x+3)2+(x+4)2=(3+4)2.
整理,得x2+7x=12.
所以S△ABC=ACBC
=(x+3)(x+4)
=(x2+7x+12)
=×(12+12)
=12.
小穎發(fā)現(xiàn)12恰好就是3×4,即△ABC的面積等于AD與BD的積.這僅僅是巧合嗎?
請你幫她完成下面的探索.
已知:△ABC的內(nèi)切圓與AB相切于點(diǎn)D,AD=m,BD=n.
可以一般化嗎?
(1)若∠C=90°,求證:△ABC的面積等于mn.
倒過來思考呢?
(2)若ACBC=2mn,求證∠C=90°.
改變一下條件……
(3)若∠C=60°,用m、n表示△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=8cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以每秒cm的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從B點(diǎn)出發(fā),以每秒1cm的速度向C點(diǎn)運(yùn)動(dòng),設(shè)P,Q兩點(diǎn)的運(yùn)動(dòng)時(shí)間為t(0<t<8)秒.
(1)BQ= ,BP= (用含t的式子表示).
(2)當(dāng)t=2時(shí),求△PCQ的面積(提示:在一個(gè)三角形中,若兩個(gè)角相等,則角所對的邊也相等).
(3)當(dāng)PQ=PC時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+3與x軸交于A(﹣3,0)、B(1,0)兩點(diǎn),與y軸交于點(diǎn)C,連接AC..
(1)請求出拋物線y=ax2+bx+3的解析式;
(2)如圖2,點(diǎn)P、點(diǎn)Q同時(shí)從點(diǎn)A出發(fā),點(diǎn)P沿AC以每秒個(gè)單位長度的速度,由點(diǎn)A向點(diǎn)C運(yùn)動(dòng);點(diǎn)Q沿AB以每秒2個(gè)單位長度的速度,由點(diǎn)A向點(diǎn)B運(yùn)動(dòng);當(dāng)一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,連接PQ.
①求證:PQ⊥AC;
②過點(diǎn)Q作QE⊥x軸,交拋物線于點(diǎn)E,連接PE,當(dāng)PQ=PE時(shí),請求出t的值;
③在y軸上是否存在點(diǎn)D,使以點(diǎn)A、P、Q、D為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出D點(diǎn)坐標(biāo):若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com