【題目】如圖,一個二次函數(shù)的圖象經(jīng)過點A、C、B三點,點A的坐標為(﹣1,0),點B的坐標為(3,0),點C在y軸的正半軸上,且AB=OC.
(1)求點C的坐標;
(2)求這個二次函數(shù)的解析式,并求出該函數(shù)的最大值.
【答案】
(1)解:∵A(﹣1,0)、B(3,0),
∴AO=1,OB=3,即AB=AO+OB=1+3=4.
∴OC=4,即點C的坐標為(0,4)
(2)解:設(shè)圖象經(jīng)過A、C、B三點的二次函數(shù)的解析式為y=ax2+bx+c,把A、C、B三點的坐標分別代入上式,
得 ,
解得a=﹣ ,b= x,c=4,
∴所求的二次函數(shù)解析式為y=﹣ x2+ x+4.
∵點A、B的坐標分別為點A(﹣1,0)、B(3,0),
∴線段AB的中點坐標為(1,0),即拋物線的對稱軸為直線x=1.
∵a=﹣ <0,
∴當x=1時,y有最大值y=﹣ + +4=
【解析】(1)首先求得AB,得出OC,求得點C的坐標;(2)利用待定系數(shù)法求的函數(shù)解析式,進一步利用頂點坐標公式求得最值即可.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC的三個頂點的坐標分別為A(﹣6,0)、B(﹣2,3)、
C(﹣1,0).
(1)請直接寫出與點B關(guān)于坐標原點O的對稱點B1的坐標;
(2)將△ABC繞坐標原點O逆時針旋轉(zhuǎn)90°.畫出對應(yīng)的△A′B′C′圖形,直接寫出點A的對應(yīng)點A′的坐標;
(3)若四邊形A′B′C′D′為平行四邊形,請直接寫出第四個頂點D′的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將長方形ABCD對折,得折痕PQ,展開后再沿MN翻折,使點C恰好落在折痕PQ上的點C′處,點D落在D′處,其中M是BC的中點且MN與折痕PQ交于F.連接AC′,BC′,則圖中共有等腰三角形的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,△ABC的三個頂點坐標分別為A(﹣2,1),B(﹣4,5),C(﹣5,2).
(1)①畫出△ABC關(guān)于y軸對稱的△A1B1C1;
②畫出△ABC關(guān)于原點O成中心對稱的△A2B2C2;
(2)求△A2B2C2的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論
①a>0,②b>0,③c>0,④b2﹣4ac>0
其中正確的有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,正方形的頂點的坐標為,點在軸正半軸上,點在第三象限的雙曲線上,過點作軸交雙曲線于點,連接,則的面積為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知 AB 是⊙O 的直徑,點 C、D 在⊙O 上,過 D 點作 PF∥AC交⊙O 于 F,交 AB 于點 E,∠BPF=∠ADC
(1)求證:AEEB=DEEF.
(2)求證:BP 是⊙O 的切線:
(3)當?shù)陌霃綖?/span>,AC=2,BE=1 時,求 BP 的長,
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校學生會為了解本校初中學生每天做作業(yè)所用時間情況,采用問卷的方式對一部分學生進行調(diào)查.在確定調(diào)查對象時,大家提出以下幾種方案:A.對各班班長進行調(diào)查;B.對某班的全體學生進行調(diào)查;C.從全校每班隨機抽取5名學生進行調(diào)查.在問卷調(diào)查時,每位被調(diào)查的學生都選擇了問卷中適合自己的一個時間,學生會將收集到的數(shù)據(jù)整理后繪制成如圖所示的條形統(tǒng)計圖.
(1)為了使收集到的數(shù)據(jù)具有代表性.學生會在確定調(diào)查對象時應(yīng)選擇方案________ (填A,B或C);
(2)被調(diào)查的學生每天做作業(yè)所用時間的眾數(shù)為________h;
(3)根據(jù)以上統(tǒng)計結(jié)果,估計該校900名初中學生中每天做作業(yè)用1.5 h的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC邊上一點,∠B=30°∠DAB=45°.(1)求∠DAC的度數(shù);(2)請說明:AB=CD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com