幾何解答題
(1)如圖,延長線段AB到C,使BC=
12
AB,D為AC的中點,DC=2,求AB的長.
(2)如圖,將一副直角三角尺的直角頂點C疊放在一起.
①如圖1,若CE恰好是∠ACD的角平分線,請直接回答此時CD是否是∠ECB的角平分線?
②如圖2,若∠ECD=α,CD在∠BCE的內(nèi)部,請你猜想∠ACE與∠DCB是否相等?并簡述理由;
③在②的條件下,請問∠ECD與∠ACB的和是多少?并簡述理由.
分析:(1)由D為AC的中點,根據(jù)DC的長求出AC的長,再由AB=2BC,求出AB在AC中占的份數(shù),即可求出AB的長;
(2)①由∠ACD為直角,且CE為角平分線,得到一對角相等,再由∠ECB為直角,確定出∠ECD=∠DCB,即可確定出CD為角平分線;
②∠ACE=∠DCB,理由為:由∠ACD與∠ECB都為直角,利用同角的余角相等即可得證;
③兩角之和為180°,理由為:延長BC,延長線為BE,由鄰補角定義得到∠ACG+∠ACB=180°,再利用同角的余角相等得到∠ECD=∠ACG,即可得證.
解答:解:(1)∵D為AC的中點,DC=2,
∴AC=2DC=4,
∵BC=
1
2
AB,
∴AB=
2
3
AC=
8
3


(2)①∠ACD=90°,CE為∠ACD的平分線,
∴∠ACE=∠ECD=45°,
∵∠ECB=90°,
∴∠ECD=∠DCB=45°,
∴CD平分∠ECB;
②∠ACE=∠DCB,理由為:
∵∠ACE+∠ECD=90°,∠DCB+∠ECD=90°,
∴∠ACE=∠DCB;
③延長BC,延長線為BG,
∵∠ACG+∠ACE=90°,∠ECD+∠ACE=90°,
∴∠ECD=∠ACG,
∴∠ECD+∠ACB=∠ACG+∠ACB=180°.
點評:此題考查了角的計算,角平分線定義,是一道基本題型.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

幾何解答題
(1)如圖1,直線l1、l2分別與直線l3、l4相交,∠1=76°,∠2=104°,∠3=68°,求∠4的度數(shù).
(2)如圖2,∠1+∠2=180.,∠3=∠B,試判斷∠AED與∠ACB的大小關系,并對此結(jié)論進行證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

幾何解答題
(1)如圖,延長線段AB到C,使BC=數(shù)學公式AB,D為AC的中點,DC=2,求AB的長.
(2)如圖,將一副直角三角尺的直角頂點C疊放在一起.
①如圖1,若CE恰好是∠ACD的角平分線,請直接回答此時CD是否是∠ECB的角平分線?
②如圖2,若∠ECD=α,CD在∠BCE的內(nèi)部,請你猜想∠ACE與∠DCB是否相等?并簡述理由;
③在②的條件下,請問∠ECD與∠ACB的和是多少?并簡述理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

幾何解答題
(1)如圖,延長線段AB到C,使BC=
1
2
AB,D為AC的中點,DC=2,求AB的長.
(2)如圖,將一副直角三角尺的直角頂點C疊放在一起.
①如圖1,若CE恰好是∠ACD的角平分線,請直接回答此時CD是否是∠ECB的角平分線?
②如圖2,若∠ECD=α,CD在∠BCE的內(nèi)部,請你猜想∠ACE與∠DCB是否相等?并簡述理由;
③在②的條件下,請問∠ECD與∠ACB的和是多少?并簡述理由.

精英家教網(wǎng)

查看答案和解析>>

同步練習冊答案