【題目】如圖,已知ABCD、EF相交于點O,EFAB,OGCOF的平分線,OHDOG的平分線.

(1)AOCCOG=47,求DOF的大。

(2)AOCDOH=829,求COH的大小.

【答案】(1)DOF=110° (2)COH=107.5°

【解析】本題考查對頂角的定義、性質垂直定義、角平分線的定義和根據(jù)圖形寫出角的和差關系式

解:(1AB、CD、EF相交于點O,∴∠AOC=BOD

EFAB ∴∠AOFBOFAOEBOE90°

OG為COF的平分線,∴∠COG=GOF

∵∠AOCCOG=47

∴∠AOCGOF=47,AOCCOF=414 ,AOCAOF=418

∴∠AOCBOD20°

DOFBOD+BOF20°90°110°

2)由(1)知:AOC=BOD COG=GOF,AOFBOF90°

OH為DOG的平分線.∴∠DOHGOH

∵∠AOCDOH=829∴∠BODBOH=821;

BOD8k,COG=GOFx,則GOH29kBOH21k ,由AOFBOF90°

8k+2x29k+21kx 解得x14k ,

代入29k+21k14k90°解得k2.5°

COHCOH+COH+COH14k+29k43k43×2.5°107.5°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知△A1B1C1,△A2B2C2的周長相等,現(xiàn)有兩個判斷:

A1B1=A2B2,A1C1=A2C2,則△A1B1C1≌△A2B2C2;

∠A1=∠A2,∠B1=∠B2,則△A1B1C1≌△A2B2C2,

對于上述的兩個判斷,下列說法正確的是( 。

A. 正確,錯誤 B. 錯誤,正確 C. ①,②都錯誤 D. ①,②都正確

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A從原點出發(fā)沿數(shù)軸向左運動,同時,點B也從原點出發(fā)沿數(shù)軸向右運動.已知點A的速度是1單位長度/秒,點B的速度是點A的速度的4倍(速度單位:單位長度/秒).

(1)求請在數(shù)軸上標出AB兩點從原點出發(fā)運動3秒時的位置;

(2)若A、B兩點在(1)中的位置,數(shù)軸上是否存在一點P到點A,點B的距離之和為16,并求出此時點P表示的數(shù);若不存在,請說明理由.

(3)若A、B兩點從(1)中的位置開始,仍以原來的速度同時沿數(shù)軸向左運動時,另一點C同時從B點位置出發(fā)向A點運動,當遇到A點后,立即返回向B點運動,遇到B點后又立即返回向A點運動,如此往返,直到B點追上A點時,C點立即停止運動.若點C一直以10單位長度/秒的速度勻速運動,那么點C從開始運動到停止運動,行駛的路程是多少個單位長度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某開發(fā)商進行商鋪促銷,廣告上寫著如下條款:

購買商鋪后,都由開發(fā)商代為租賃10年,10年期滿后再由開發(fā)商以比原商鋪標價高20%的價格進行回購,投資者可在以下兩種購鋪方案中做出選擇:

方案一投資者按商鋪標價一次性付清鋪款,每年可以獲得的租金為商鋪標價的5%.

方案二:投資者按商鋪標價的八五折一次性付清鋪款,4年后每年可以獲得的租金為商鋪標價的5%,但要繳納租金的10%作為管理費用.

(1)請問:投資者選擇哪種購鋪方案,10年后所獲得的投資收益率更高?為什么?(注:投資收益率=×100%)

(2)(列方程求解)某投資者按方案一購買商鋪,因資金周轉,決定向銀行貸鋪款的20%并于一年后付清貸款,已知貸款年利率為5%.那么10年后該投資者獲得55.2萬元的收益,問鋪款是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A在數(shù)軸上對應的數(shù)為﹣3,點B對應的數(shù)為2.

(1)如圖1C在數(shù)軸上對應的數(shù)為x,且x是方程2x+1=x﹣5的解,在數(shù)軸上是否存在點P使PA+PBBC+AB?若存在,求出點P對應的數(shù);若不存在,說明理由;

(2)如圖2,若P點是B點右側一點,PA的中點為MNPB的三等分點且靠近于P點,當PB的右側運動時,有兩個結論:PMBN的值不變; BN的值不變,其中只有一個結論正確,請判斷正確的結論,并求出其值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】筐白菜以每筐千克為標準,超過的千克數(shù)記作正數(shù),不足的千克數(shù)記作負數(shù),稱后的記錄如下:

回答下列問題:

(1)這筐白菜中,最接近千克的那筐白菜為  千克;

(2)若白菜每千克售價,則出售這8筐白菜可賣多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,將△ABO繞點B順時針旋轉到△A1BO1的位置,使點A的對應點A1落在直線y= x上,再將△A1BO1繞點A1順時針旋轉到△A1B1O2的位置,使點O1的對應點O2落在直線y= x上,依次進行下去…,若點A的坐標是(0,1),點B的坐標是( ,1),則點A8的橫坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰直角三角形ABC中,∠C=90 o,AC=BC=4,點D是AB的中點,E.F在射線AC與射線CB上運動,且滿足AE=CF;當點E運動到與點C的距離為1時,則△DEF的面積為___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是⊙O的內(nèi)接三角形,AB是⊙O的直徑,OD⊥AB于點O,分別交AC、CF于點E、D,且DE=DC.
(1)求證:CF是⊙O的切線;
(2)若⊙O的半徑為5,BC= ,求DE的長.

查看答案和解析>>

同步練習冊答案