如圖,有一塊直角三角形紙片,兩直角邊AC=3,BC=4,將直角三角形紙片ABC折疊,使直角邊AC落在斜邊AB上,折痕為AD,則BD=   
【答案】分析:先根據(jù)勾股定理求出AB的長(zhǎng),再設(shè)BD=x,則CD=4-x,由圖形翻折變換的性質(zhì)可得出AC=AC′,CD=C′D,再在Rt△BC′D中利用勾股定理即可求出x的值,進(jìn)而可得出BD的長(zhǎng).
解答:解:∵Rt△ABC中,兩直角邊AC=3,BC=4,
∴AB===5,
設(shè)BD=x,則CD=4-x,
∵AC′=AC=3,C′D=CD=CB-DB=4-x,BC′=AB-AC′=5-3=2,
∴在Rt△BC′D中,BC′2+C′D2=BD2,
即22+(4-x)2=x2
解得x=,
∴BD=
故答案為:
點(diǎn)評(píng):本題考查的是圖形的翻折變換及勾股定理,解答此類題時(shí)常常設(shè)要求的線段長(zhǎng)為x,然后根據(jù)折疊和軸對(duì)稱的性質(zhì)用含x的代數(shù)式表示其他線段的長(zhǎng)度,選擇適當(dāng)?shù)闹苯侨切,運(yùn)用勾股定理列出方程求出答案.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

9、如圖,有一塊直角三角形紙片,兩直角邊AC=6cm,BC=8cm.現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,則CD等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

3、如圖,有一塊直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿著直線AD折疊,使它落在斜邊AB上,且與AE重合,則CD的長(zhǎng)為
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、如圖,有一塊直角三角形紙片,現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,則點(diǎn)C與斜邊AB的中點(diǎn)E正好重合,且BD=8cm,則AD的長(zhǎng)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,有一塊直角三角形紙片,∠C=90°,AC=4cm,BC=3cm,將斜邊AB翻折,使點(diǎn)B落在直角邊AC的延長(zhǎng)線上的點(diǎn)E處,折痕為AD,則CD的長(zhǎng)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,有一塊直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角三角形紙片沿直線AD折疊,使點(diǎn)C恰好落在斜邊AB上點(diǎn)E處.
(1)求AB的長(zhǎng);
(2)直接寫(xiě)出AE、BE的長(zhǎng)及∠BED的度數(shù);
(3)求CD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案