【題目】如圖,在ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,在DC的延長(zhǎng)線上取一點(diǎn)E,連接OE交BC于點(diǎn)F.已知AB=4,BC=6,CE=2,則CF的長(zhǎng)等于( )
A. 1 B. 1.5 C. 2 D. 3
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠MON=90°,A是∠MON內(nèi)部的一點(diǎn),過(guò)點(diǎn)A作AB⊥ON,垂足為點(diǎn)B,AB=3厘米,OB=4厘米,動(dòng)點(diǎn)E、F同時(shí)從O點(diǎn)出發(fā),點(diǎn)E以1.5厘米/秒的速度沿ON方向運(yùn)動(dòng),點(diǎn)F以2厘米/秒的速度沿OM方向運(yùn)動(dòng),EF與OA交于點(diǎn)C,連接AE,當(dāng)點(diǎn)E到達(dá)點(diǎn)B時(shí),點(diǎn)F隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)當(dāng)t=1秒時(shí),△EOF與△ABO是否相似?請(qǐng)說(shuō)明理由;
(2)在運(yùn)動(dòng)過(guò)程中,不論t取何值,總有EF⊥OA,為什么?
(3)在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使得△AEB與△OEF相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市新建了圓形文化廣場(chǎng),小杰和小浩準(zhǔn)備不同的方法測(cè)量該廣場(chǎng)的半徑.
(1)小杰先找圓心,再量半徑,請(qǐng)你在圖1中,用尺規(guī)作圖的方法幫小杰找到該廣場(chǎng)的圓心(不寫(xiě)作法,保留作圖痕跡);
(2)小浩在廣場(chǎng)邊(如圖2)選取、、三根石柱,量得、之間的距離與、之間的距離相等,并測(cè)得長(zhǎng)為240米,到的距離為5米.請(qǐng)你幫他求出廣場(chǎng)的半徑;
(3)請(qǐng)你解決下面的問(wèn)題:如圖3,的直徑為,弦,是弦上的一個(gè)動(dòng)點(diǎn),求出的長(zhǎng)度范圍是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次聚會(huì)上,規(guī)定每?jī)蓚(gè)人見(jiàn)面必須握手,且握手1次.
(1)若參加聚會(huì)的人數(shù)為3,則共握手 次;若參加聚會(huì)的人數(shù)為5,則共握手 次;
(2)若參加聚會(huì)的人數(shù)為n(n為正整數(shù)),則共握手 次;
(3)若參加聚會(huì)的人共握手28次,請(qǐng)求出參加聚會(huì)的人數(shù).
(4)嘉嘉由握手問(wèn)題想到了一個(gè)數(shù)學(xué)問(wèn)題:若線段AB上共有m個(gè)點(diǎn)(不含端點(diǎn)A,B),線段總數(shù)為多少呢?請(qǐng)直接寫(xiě)出結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,,.
(1)經(jīng)過(guò)A、B、C三點(diǎn)的圓弧所在圓的圓心M的坐標(biāo)為________.
(2)點(diǎn)D坐標(biāo)為,連接CD,判斷直線CD與⊙M的位置關(guān)系并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)實(shí)數(shù)根,且其中一個(gè)根為另一個(gè)根的2倍,那么稱這樣的方程為“倍根方程”.例如,一元二次方程x2﹣6x+8=0的兩個(gè)根是x1=2和x2=4,則方程x2﹣6x+8=0是“倍根方程”.
(1)根據(jù)上述定義,一元二次方程2x2+x﹣1=0 (填“是”或“不是”)“倍根方程”.
(2)若一元二次方程x2﹣3x+c=0是“倍根方程”,則c= .
(3)若關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)是“倍根方程”,則a、b、c之間的關(guān)系為 .
(4)若(x﹣2)(mx﹣n)=0(m≠0)是“倍根方程”,求代數(shù)式4m2﹣5mn+n2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD和正方形CEFG的邊長(zhǎng)分別為a和b,BE和DG相交于點(diǎn)H,連接HC,給出下列結(jié)論:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正確的結(jié)論是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn),以原點(diǎn)O為圓心、3為半徑作⊙O,⊙O與x軸交于點(diǎn)B、C.點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)單位的速度沿y軸正半軸運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為.連結(jié)AP,將沿AP翻折,得到,求有一邊所在直線與⊙O相切時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半徑為5的⊙A中,弦BC、ED所對(duì)的圓心角分別是∠BAC,∠EAD,已知DE=6,∠BAC+∠EAD=180°.求點(diǎn)A到弦BC的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com