【題目】在平行四邊形ABCD中,E為邊上一點(diǎn),連結(jié)AE并延長(zhǎng)交直線DC于F,且CE=CF.
(1)如圖1,求證:AF是∠BAD的平分線;
(2)如圖2,若∠ABC=90°,點(diǎn)G是線段EF上一點(diǎn),連接DG、BD、CG,若∠BDG=45°,求證:CG=EF.
【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析.
【解析】
(1)根據(jù)四邊形ABCD是平行四邊形得出,AB∥DF,BC∥AD,得出∠2=∠F,∠1=∠3,進(jìn)而求出∠1=∠2即可;
(2)根據(jù)∠ABC=90°,G是EF的中點(diǎn)可直接求得.
證明:(1)在平行四邊形ABCD中,∠AEB=∠EAD
∵CE=CF,
∴∠CEF=∠CFE
∴∠AEB=∠CFE
∴∠BAF=∠DAF
∴AF是∠BAD的平分線
(2)連接BG,
∵在平行四邊形ABCD中,∠ABC=90°,
∴四邊形ABCD是矩形,
∵CE=CF,∠BCD=∠ECF=90°,
∴△CEF為直角三角形,
∴∠CEF=45°
∴∠BAE=45°,
∴∠EAB=45°,
∵∠BDG=45°,
∴ABGD四點(diǎn)共圓 (同弦BG)
又四邊形ABCD是矩形
∴ABCD四點(diǎn)共圓
即ABGCD五點(diǎn)共圓
∴∠ECG=45°,
∵△CEF為直角三角形,∠ECG=45°,
∴CG是RT△CEF斜邊EF上的中線,
∴CG=EF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AD是BC邊上的高,AE、BF分別是∠BAC、∠ABC的平分線,∠BAC=50°,∠ABC=60°,則∠EAD+∠ACD=( 。
A. 75° B. 80° C. 85° D. 90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與實(shí)踐
(1)實(shí)踐操作:中,,為直線上一點(diǎn),過(guò)點(diǎn)作,與直線相交于點(diǎn),如圖①,圖②,圖③所示,則的形狀為______.
(2)問(wèn)題解決:等腰三角形是一種特殊的三角形,常與全等三角形的相關(guān)知識(shí)結(jié)合在一起解決問(wèn)題.如圖④,中,,為上一點(diǎn),為延長(zhǎng)線上一點(diǎn),且,交于,求證:.
(3)拓展與應(yīng)用,在(2)的條件下,如圖⑤,過(guò)點(diǎn)作的垂線,垂足為,若,則的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(問(wèn)題解決)
一節(jié)數(shù)學(xué)課上,老師提出了這樣一個(gè)問(wèn)題:如圖1,點(diǎn)P是正方形ABCD內(nèi)一點(diǎn),PA=1,PB=2,PC=3.你能求出∠APB的度數(shù)嗎?
小明通過(guò)觀察、分析、思考,形成了如下思路:
思路一:將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到△BP′A,連接PP′,求出∠APB的度數(shù);
思路二:將△APB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°,得到△CP'B,連接PP′,求出∠APB的度數(shù).
請(qǐng)參考小明的思路,任選一種寫出完整的解答過(guò)程.
(類比探究)
如圖2,若點(diǎn)P是正方形ABCD外一點(diǎn),PA=3,PB=1,PC=,求∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AD平分,AB=AC,則此圖中全等三角形有( )
A.2對(duì)B.3對(duì)C.4對(duì)D.5對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn):如圖1,和均為等邊三角形,點(diǎn)A,D,E在同一直線上,連接BE.
填空:①的度數(shù)為 ;
②線段AD,BE之間的數(shù)量關(guān)系為 .
(2)拓展探究:如圖2,和均為等腰直角三角形,,點(diǎn)A,D,E在同一直線上,CM為中DE邊上的高,連接BE,求的度數(shù),并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn):
如圖①,△ABC 和△AED 都是等腰直角三角形,∠BAC=∠EAD=90°,點(diǎn) B 在線段AE 上,點(diǎn) C 在線段AD 上,請(qǐng)直接寫出線段 BE 與線段 CD 的數(shù)量與位置關(guān)系是關(guān)系: ;
(2)操作探究:
如圖②,將圖①中的△ABC 繞點(diǎn) A 順時(shí)針旋轉(zhuǎn)α(0°<α<360°),(1)小題中線段 BE 與線段 CD 的關(guān)系是否成立?如果不成立,說(shuō)明理由,如果成立,請(qǐng)你結(jié)合圖②給出的情形進(jìn)行證明;
(3)解決問(wèn)題:
將圖①中的△ABC 繞點(diǎn) A 順時(shí)針旋轉(zhuǎn)α(0°<α<360°),若 DE=2AC,在旋轉(zhuǎn)的過(guò)程中,當(dāng)以 A、B、C、D 四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),在備用圖中畫出其中的一個(gè)情形,并寫出此時(shí)旋轉(zhuǎn)角α的度數(shù)是 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,B,C,D在⊙O上,AB=AC,AD與BC相交于點(diǎn)E,AE=ED,延長(zhǎng)DB到點(diǎn)F,使FB=BD,連接AF.
(1)證明:△BDE∽△FDA;
(2)試判斷直線AF與⊙O的位置關(guān)系,并給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,每個(gè)小正方形網(wǎng)格的邊長(zhǎng)為1,和關(guān)于點(diǎn)成中心對(duì)稱.
(1)畫出對(duì)稱中心,并寫出點(diǎn)的坐標(biāo)______.
(2)畫出繞點(diǎn)順時(shí)針旋轉(zhuǎn)后的;連接,可求得線段長(zhǎng)為______.
(3)畫出與關(guān)于點(diǎn)成中心對(duì)稱的;連接、,則四邊形是______;(填屬于哪一種特殊四邊形),它的面積是______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com