(1)如圖1,在△ABC中,點D、E、Q分別在AB、AC、BC上,且DE//BC,AQ交DE于點P,求證:

(2)如圖,△ABC中,∠BAC=90°,正方形DEFG的四個頂點在△ABC的邊上,連接AG,AF分別交DE于M,N兩點.
①如圖2,若AB=AC=1,直接寫出MN的長;
②如圖3,求證:MN=DM·EN
(1)證明見解析;(2)①,②證明見解析.

試題分析:(1)易證明△ADP∽△ABQ,△ACQ∽△ADP,從而得出.(2)①根據(jù)等腰直角三角形的性質(zhì)和勾股定理,求出BC邊上的高,根據(jù)△ADE∽△ABC,求出正方形DEFG的邊長。從而,由△AMN∽△AGF和△AMN的MN邊上高,△AGF的GF邊上高,GF=,根據(jù) MN:GF等于高之比即可求出MN. ②可得出△BGD∽△EFC,則DG•EF=CF•BG;又DG=GF=EF,得GF2=CF•BG,再根據(jù)(1),從而得出結(jié)論.
試題解析:(1)在△ABQ中,由于DP∥BQ,∴△ADP∽△ABQ.  ∴.
同理在△ACQ中,.
.
(2)① .
②∵∠B+∠C=90°,∠CEF+∠C=90,∴∠B=∠CEF.
又∵∠BGD=∠EFC,∴△BGD∽△EFC.∴.∴DG·EF=CF·BG.
又∵DG=GF=EF,∴GF2=CF·BG.
由(1)得 ,∴. ∴MN2=DM·EN.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點C落在斜邊AB上某一點D處,折痕為EF(點E、F分別在邊AC、BC上).

(1)若△CEF與△ABC相似.
①當(dāng)AC=BC=2時,AD的長為_________;
②當(dāng)AC=3,BC=4時,AD的長為_________;
(2)當(dāng)點D是AB的中點時,△CEF與△ABC相似嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E為BC邊上一點,以BE為邊作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同側(cè).

(1)當(dāng)正方形的頂點F恰好落在對角線AC上時,求BE的長;
(2)將(1)問中的正方形BEFG沿BC向右平移,記平移中的正方形BEFG為正方形B′EFG,當(dāng)點E與點C重合時停止平移.設(shè)平移的距離為t,正方形B′EFG的邊EF與AC交于點M,連接B′D,B′M,DM.是否存在這樣的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,請說明理由;
(3)在(2)問的平移過程中,設(shè)正方形B′EFG與△ADC重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式以及自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在正方形ABCD中,AB=1,點E在AB延長線上,聯(lián)結(jié)CE、DE,DE交邊BC于點F,設(shè)BE,CF

圖1
(1)求關(guān)于的函數(shù)解析式,并寫出的取值范圍;
(2)如圖2,對角線AC、BD的交點記作O,直線OF交線段CE于點G,求證:;

圖2
(3)在(2)的條件下,當(dāng)時,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在以AB為直徑的半圓中,有一個邊長為1的內(nèi)接正方形CDEF,則以AC和BC的長為兩根的一元二次方程是(   )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在?ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,則DF=     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,∠DAB=∠CAE,要使△ABC∽△ADE,則補充的一個條件可以是               (注:只需寫出一個正確答案即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,△ABO縮小后變?yōu)椤鰽′B′O,其中A、B的對應(yīng)點分別為A′、B′,A′、B′均在圖中格點上,若線段AB上有一點P(m,n),則點P在A′B′上的對應(yīng)點P′的坐標(biāo)為

A、      B、(m,n)       C、       D、 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

計算:=___________.

查看答案和解析>>

同步練習(xí)冊答案