【題目】將兩個(gè)直角三角尺的頂點(diǎn)O疊放在一起
(1)如圖(1)若∠BOD=35°,則∠AOC=___;若∠AOC=135°,則∠BOD=___;
(2)如圖(2)若∠AOC=140°,則∠BOD=___;
(3)猜想∠AOC與∠BOD的大小關(guān)系,并結(jié)合圖(1)說明理由.
【答案】(1)145°,45°;(2)40°;(3)∠AOC與∠BOD互補(bǔ),理由見解析
【解析】
(1)由于是兩直角三角形板重疊,根據(jù)∠AOC=∠AOB+∠COD-∠BOD可分別計(jì)算出∠AOC、∠BOD的度數(shù);
(2)根據(jù)∠BOD=360°-∠AOC-∠AOB-∠COD計(jì)算可得;
(3)由∠AOD+∠BOD+∠BOD+∠BOC=180°且∠AOD+∠BOD+∠BOC=∠AOC可知兩角互補(bǔ);
解:(1)若∠BOD=35°,
∵∠AOB=∠COD=90°,
∴∠AOC=∠AOB+∠COD-∠BOD=90°+90°-35°=145°,
若∠AOC=135°,
則∠BOD=∠AOB+∠COD-∠AOC=90°+90°-135°=45°;
(2)如圖2,若∠AOC=140°,
則∠BOD=360°-∠AOC-∠AOB-∠COD=40°;
(3)∠AOC與∠BOD互補(bǔ),理由如下,
∵∠AOD+∠BOD+∠BOD+∠BOC=180°,
∵∠AOD+∠BOD+∠BOC=∠AOC,
∴∠AOC+∠BOD=180°,
即∠AOC與∠BOD互補(bǔ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中的兩點(diǎn)A(m,0),B(2m,0)(m>0),二次函數(shù)y=ax2+bx+m的圖象與x軸交與A,B兩點(diǎn)與y軸交于點(diǎn)C,頂點(diǎn)為點(diǎn)D.
(1)當(dāng)m=1時(shí),直線BC的解析式為 , 二次函數(shù)y=ax2+bx+m的解析式為;
(2)求二次函數(shù)y=ax2+bx+m的解析式為(用含m的式子表示);
(3)連接AC、AD、BD,請(qǐng)你探究 的值是否與m有關(guān)?若有關(guān),求出它與m的關(guān)系;若無關(guān),說明理由;
(4)當(dāng)m為正整數(shù)時(shí),依次得到點(diǎn)A1 , A2 , …,Am的橫坐標(biāo)分別為1,2,…m;點(diǎn)B1 , B2 , …,Bm 的橫坐標(biāo)分別為2,4,…2m(m≤10);經(jīng)過點(diǎn)A1 , B1 , 點(diǎn)A2 , B2 , …,點(diǎn)Am , Bm的這組拋物線y=ax2+bx+m分別與y軸交于點(diǎn)C1 , C2 , …,Cm , 由此得到了一組直線B1C1 , B2C2 , …,BmCm , 在點(diǎn)B1 , B2 , …,Bm 中任取一點(diǎn)Bn , 以線段OBn為邊向上作正方形OBnEnFn , 若點(diǎn)En在這組直線中的一條直線上,直接寫出所有滿足條件的點(diǎn)En的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l與⊙O相離,OA⊥l于點(diǎn)A,OA=5.OA與⊙O相交于點(diǎn)P,AB與⊙O相切于點(diǎn)B,BP的延長線交直線l于點(diǎn)C.
(1)試判斷線段AB與AC的數(shù)量關(guān)系,并說明理由;
(2)若PC=2 ,求⊙O的半徑和線段PB的長;
(3)若在⊙O上存在點(diǎn)Q,使△QAC是以AC為底邊的等腰三角形,求⊙O的半徑r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,邊長為a的正方形中有一個(gè)邊長為b的小正方形,如圖2所示是由圖1中陰影部分拼成的一個(gè)正方形.
(1)設(shè)圖1中陰影部分面積為S1,圖2中陰影部分面積為S2.請(qǐng)直接用含a,b的代數(shù)式表示S1,S2;
(2)請(qǐng)寫出上述過程所揭示的乘法公式;
(3)試?yán)眠@個(gè)公式計(jì)算:(2+1)(22+1)(24+1)(28+1)+1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,給出了下列三個(gè)論斷:①對(duì)角線AC平分∠BAD;②CD=BC;③∠D+∠B=180°.在上述三個(gè)論斷中,若以其中兩個(gè)論斷作為條件,另外一個(gè)論斷作為結(jié)論,則可以得出______個(gè)正確的命題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延長線于點(diǎn)E.求證:BD=2CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E正方形ABCD外一點(diǎn),點(diǎn)F是線段AE上一點(diǎn),△EBF是等腰直角三角形,其中∠EBF=90°,連接CE、CF.
(1)求證:△ABF≌△CBE;
(2)判斷△CEF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC,CD⊥AB于D點(diǎn),M,N是AC,BC上的動(dòng)點(diǎn),且∠MDN=90°,下列結(jié)論:①AM=CN;②四邊形MDNC的面積為定值;③AM2+BN2=MN2;④NM平分∠CND.其中正確的是 ( )
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某園林專業(yè)戶計(jì)劃投資種植花卉及樹木,根據(jù)市場調(diào)查與預(yù)測,種植樹木的利潤y1與投資量x成正比例關(guān)系,種植花卉的利潤y2與投資量x的平方成正比例關(guān)系,并得到了表格中的數(shù)據(jù).
投資量x(萬元) | 2 |
種植樹木利潤y1(萬元) | 4 |
種植花卉利潤y2(萬元) | 2 |
(1)分別求出利潤y1與y2關(guān)于投資量x的函數(shù)關(guān)系式;
(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,設(shè)他投入種植花卉金額m萬元,種植花卉和樹木共獲利利潤W萬元,直接寫出W關(guān)于m的函數(shù)關(guān)系式,并求他至少獲得多少利潤?他能獲取的最大利潤是多少?
(3)若該專業(yè)戶想獲利不低于22萬,在(2)的條件下,直接寫出投資種植花卉的金額m的范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com