【題目】如圖,已知單位長度為1的方格中有三角形ABC.

(1)請畫出三角形ABC向上平移3格再向右平移2格所得的三角形A′B′C′;

(2)請以點A為坐標原點建立平面直角坐標系(在圖中畫出),然后寫出點B,B′的坐標.

【答案】(1)作圖見解析;(2)作圖見解析,B(1,2),(3,5).

【解析】

對于(1),平移△ABC即是將點AB、C按照題中所述步驟進行移動,得到點A′、B′、C,然后連接即可;

對于(2),使單元格的交點落在數(shù)軸上,x軸與y軸相互垂直,交點為A點,建立平面直角坐標系,根據(jù)方格的長度為1,即可找到所求點的坐標.

(1)如圖可得三角形

(2)如圖,以點A為坐標原點建立平面直角坐標系,則B(1,2),(3,5).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(探究)如圖①,從邊長為a的大正方形中剪掉一個邊長為b的小正方形,有陰影部分沿虛線剪開,拼成圖②的長方形

1)請你分別表示出這兩個圖形中陰影部分的面積

2)比較兩圖的陰影部分面積,可以得到乘法公式 (用字母表示)

(應用)請應用這個公式完成下列各題

①已知,,則的值為

②計算:

(拓展)①結果的個位數(shù)字為

②計算:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各式,屬于二元一次方程的個數(shù)有( 。

①xy+2xy7②4x+1xy;+y5④xy;⑤x2y22;⑥6x2y⑦x+y+z1;⑧yy1)=2x2y2+xy

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ab,cABC的三邊,若a,b,c滿足a26ab28b250,則ABC_____________三角形;若a,bc滿足a2b2c2abbcac0,則ABC_________三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】重百沃爾瑪兩家超市出售同樣的保溫壺和水杯,保溫壺和水杯在兩家超市的售價分別一樣.已知買1個保溫壺和1個水杯要花費60元,買2個保溫壺和3個水杯要花費130元.

1)請問:一個保溫壺與一個水杯售價各是多少元;(列方程組求解)

2)為了迎接五一勞動節(jié),兩家超市都在搞促銷活動,重百超市規(guī)定:這兩種商品都打九折;沃爾瑪超市規(guī)定:買一個保溫壺贈送一個水杯.若某單位想要買4個保溫壺和15個水杯,如果只能在一家超市購買,請問選擇哪家超市購買更合算,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解密數(shù)學魔術:魔術師請觀眾心想一個數(shù),然后將這個數(shù)按以下步驟操作:

魔術師能立刻說出觀眾想的那個數(shù).

1)如果小玲想的數(shù)是,請你通過計算幫助她告訴魔術師的結果;

2)如果小明想了一個數(shù)計算后,告訴魔術師結果為85,那么魔術師立刻說出小明想的那個數(shù)是:__________;

3)觀眾又進行了幾次嘗試,魔術師都能立刻說出他們想的那個數(shù).若設觀眾心想的數(shù)為,請你按照魔術師要求的運算過程列代數(shù)式并化簡,再用一句話說出這個魔術的奧妙.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線y=﹣ x+8,與x軸、y軸分別交于點A、C,以AC為對角線作矩形OABC,點P、Q分別為射線OC、射線AC上的動點,且有AQ=2CP,連結PQ,設點P的坐標為P(0,t).

(1)求點B的坐標.
(2)若t=1時,連接BQ,求△ABQ的面積.
(3)如圖2,以PQ為直徑作⊙I,記⊙I與射線AC的另一個交點為E.

①若 = ,求此時t的值.
②若圓心I在△ABC內(nèi)部(不包含邊上),則此時t的取值范圍為是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】遂寧市明星水利為提倡節(jié)約用水,準備實行自來水階梯計費方式,用戶用水不超出基本用水量的部分享受基本價格,超出基本用水量的部分實行加價收費,為更好地做決策,自來水公司隨機抽取部分用戶的用水量數(shù)據(jù),并繪制了如圖不完整的統(tǒng)計圖(每組數(shù)據(jù)包括最大值但不包括最小值),請你根據(jù)統(tǒng)計圖解決下列問題:

1)此次調(diào)查抽取了多少用戶的用水量數(shù)據(jù)?

2)補全左側(cè)統(tǒng)計圖,并求扇形統(tǒng)計圖中“25噸~30部分的圓心角度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰△AOB中,AOBO=2,點Ax軸上,OBx軸的夾角為45°;

(1)求直線AB、OB的解析式;

(2)若將△AOB沿著x軸翻折再向右平移兩個單位求直線AB的解析式.

查看答案和解析>>

同步練習冊答案