【題目】已知:如圖,中,,于,平分,且于,與相交于點
(1)求證:; (2)求證:;
(3)取邊的中點,連結、、,取的中點G,連結,說明GH與DE的位置關系.
【答案】(1)見解析;(2)見解析;(3)GH⊥DE,理由見解析.
【解析】
(1)根據等腰直角三角形的性質可得DB=DC,根據同角的余角相等可得∠DBF=∠ACD,然后利用ASA證明△ADC≌△FDB即可得到BF=AC;
(2)根據等角的余角相等可得∠A=∠BCA,進而得到BA=BC,根據等腰三角形的性質(三線合一),可得AE=EC=AC=BF;
(3)根據直角三角形斜邊上的中線等于斜邊的一半可證明DH=EH,然后根據等腰三角形的性質(三線合一)可得結論.
(1)∵∠ABC=45°,CD⊥AB于D,
∴∠DBC=∠DCB=45°,
∴DB=DC,
∵BE⊥AC,
∴∠AEB=∠ADC=90°,
∴∠A+∠ABE=90°,∠A+ACD=90°,
∴∠DBF=∠ACD,
在△ADC和△FDB中,,
∴△ADC≌△FDB(ASA),
∴BF=AC;
(2)∵∠ABE=∠CBE,∠ABE+∠A=90°,∠CBE+∠BCA=90°,
∴∠A=∠BCA,
∴BA=BC,
∵BE⊥AC,
∴AE=CE,
∵AC=BF,
∴CE=BF;
(3)GH⊥DE,
理由:如圖,
∵在Rt△BDC和Rt△BEC中,H為BC中點,
∴DH=BC,EH=BC,
∴DH=EH,
∵G為DE中點,
∴GH⊥DE.
科目:初中數學 來源: 題型:
【題目】取一副三角板按如圖所示拼接,固定三角板ADC,將三角板ABC繞點A順時針方向旋轉,旋轉角度為α(0°<α≤45°),得到△ABC′.
①當α為多少度時,AB∥DC?
②當旋轉到圖③所示位置時,α為多少度?
③連接BD,當0°<α≤45°時,探求∠DBC′+∠CAC′+∠BDC值的大小變化情況,并給出你的證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:在△ABC中,點D,E,F分別是邊AB,BC,CA上的動點,若△DEF∽△ABC(點D、E、F的對應點分別為點A、B、C),則稱△DEF是△ABC的子三角形,如圖.
(1)已知:如圖1,△ABC是等邊三角形,點D,E,F分別是邊AB,BC,CA上動點,且AD=BE=CF.
求證:△DEF是△ABC的子三角形.
(2)已知:如圖2,△DEF是△ABC的子三角形,且AB=AC,∠A=90°,若BE=,求CF和AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等邊三角形.如圖②,將四邊形ACBD折疊,使D與C重合,EF為折痕,若BC=2,則AE的值為()
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料,解答問題
(2x﹣5)2+(3x+7)2=(5x+2)2
解:設m=2x﹣5,n=3x+7,則m+n=5x+2
則原方程可化為m2+n2=(m+n)2
所以mn=0,即(2x﹣5)(3x+7)=0
解之得,x1=,x2=﹣
請利用上述方法解方程(4x﹣5)2+(3x﹣2)2=(x﹣3)2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線m⊥n,等腰Rt△ABC中,∠BAC=90°,AB=AC,點A、點B分別是m、n上兩個動點,直角邊AC交直線n于點D,斜邊BC交直線m于點E.
(1)如圖(1)求證:∠DAO=∠ABO;
(2)如圖(2),當等腰Rt△ABC運動到使點D恰為AC中點時,連接DE,求證:∠ADB=∠CDE;
(3)如圖(3),分別以OB、AB為直角邊作等腰直角△BOD和等腰直角△ABC,連結CD交直線n于點P,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關注,東營市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調查的學生共有_______人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為_______°;
(2)請補全條形統(tǒng)計圖;
(3)若該中學共有學生900人,請根據上述調查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數;
(4)若從對校園安全知識達到“了解”程度的3個女生和2個男生中隨機抽取2人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=4,∠BAC=120°,M是BC的中點,點E是AB邊上的動點,點F是線段BM上的動點,則ME+EF的最小值等于___.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,D是等邊△ABC邊AB上的一點,且AD:DB=1:2,現將△ABC折疊,使點C與D重合,折痕為EF,點E、F分別在AC和BC上,則CE:CF的值為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com