【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P和圖形N,給出如下定義:如果Q為圖形N上一個(gè)動(dòng)點(diǎn),P,Q兩點(diǎn)間距離的最大值為dmax,P,Q兩點(diǎn)間距離的最小值為dmin,我們把dmax + dmin的值叫點(diǎn)P和圖形N間的“和距離”,記作dP,圖形N).

1)如圖,正方形ABCD的中心為點(diǎn)OA(3,3)

點(diǎn)O到線段AB的“和距離”dO,線段AB= ;

設(shè)該正方形與y軸交于點(diǎn)EF,點(diǎn)P在線段EF上,dP,正方形ABCD=7,求點(diǎn)P的坐標(biāo).

2)如圖2,在(1)的條件下,過(guò)C,D兩點(diǎn)作射線CD,連接AC,點(diǎn)M是射線CD上的一點(diǎn),如果dM,線段AD,直接寫(xiě)出M點(diǎn)橫坐標(biāo)t取值范圍.

【答案】1)① ,②(0,1)(0-1);(2

【解析】

(1)①根據(jù)“和距離“的定義計(jì)算:OE是兩點(diǎn)間距離的最小值,OA是兩點(diǎn)間的最大值,相加可得結(jié)論;
②分兩種情況:Py軸的正半軸和負(fù)半軸上,根據(jù)“和距離“的定義,并由d(P,正方形ABCD)=7,列方程計(jì)算即可得;
(2)M在線段CD上和延長(zhǎng)線上兩種情況,利用“和距離”的定義列方程可得結(jié)論.

(1)①如圖1,連接OA,


∵四邊形ABCD是正方形,且A(33),

dmax+dmin=OE+OA,

d(O,線段AB)=

故答案為:;

②設(shè)P(0,),
d(P,正方形ABCD)=7,
dmax+dmin=7,
分兩種情況:
E(0,3),F(0,-3),且P是線段EF上一個(gè)動(dòng)點(diǎn),

當(dāng)P軸上方時(shí),如圖2,連接PC

dmax+dmin=PE+PC=7,

,

解得:

P(0,1)

當(dāng)P軸的下方時(shí),由對(duì)稱性可知P(0,-1);
綜上,點(diǎn)P的坐標(biāo)為(01)(0,-1);

(2)分兩種情況:
①當(dāng)時(shí),如圖3,M在線段CD上,過(guò)MMNACN,連接AM,

M點(diǎn)橫坐標(biāo)是t,
CM,
∵四邊形ABCD是正方形,
∴∠ACD=45°,
∴△CMN是等腰直角三角形,

,

d(M,線段AC),

②當(dāng)時(shí),如圖4,M在線段CD的延長(zhǎng)線上,過(guò)MMNACN,

同理

d(M,線段AC),

∵在動(dòng)點(diǎn)MCD方向上運(yùn)動(dòng)時(shí),MN+MA越來(lái)越大,

解得:,

解得:,

M點(diǎn)橫坐標(biāo)t取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式變得更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了你最喜歡的溝通方式調(diào)查問(wèn)卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息回答下列問(wèn)題:

1)本次調(diào)查共調(diào)查了______名學(xué)生;在扇形統(tǒng)計(jì)圖中,表示“QQ”的扇形圓心角的度數(shù)為______

2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)該校共有1500名學(xué)生,請(qǐng)估計(jì)該校最喜歡用微信溝通的學(xué)生有多少名?

4)某天甲、乙兩名同學(xué)都想從微信、“QQ”、電話三種溝通方式中選一種方式與對(duì)方聯(lián)系,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求出甲、乙兩名同學(xué)恰好選擇同一種溝通方式的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D是△ABC內(nèi)一點(diǎn),BDCD,EF、GH分別是邊AB、BD、CD、AC的中點(diǎn).若AD10,BD8,CD6,則四邊形EFGH的周長(zhǎng)是( 。

A.24B.20C.12D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形ABOC的頂點(diǎn)O在坐標(biāo)原點(diǎn),邊BOx軸的負(fù)半軸上,AC長(zhǎng)為,若將邊AC平移至A'C'處,此時(shí)A'坐標(biāo)為(-4,2),分別連接A'B,C'O,反比例函數(shù)y=的圖象與四邊形A'BOC'對(duì)角線A'O交于D點(diǎn),連接BD,則當(dāng)BD取得最小值時(shí),k的值是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知二次函數(shù)圖象經(jīng)過(guò)點(diǎn),,其對(duì)稱軸為直線

(1)求該二次函數(shù)的解析式;

(2)若直線的面積分成相等的兩部分,求的值;

(3)點(diǎn)是該二次函數(shù)圖象與軸的另一個(gè)交點(diǎn),點(diǎn)是直線上位于軸下方的動(dòng)點(diǎn),點(diǎn)是第四象限內(nèi)該二次函數(shù)圖象上的動(dòng)點(diǎn),且位于直線右側(cè).若以點(diǎn)為直角頂點(diǎn)的相似,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在學(xué)習(xí)軸對(duì)稱現(xiàn)象內(nèi)容時(shí),老師讓同學(xué)們尋找身邊的軸對(duì)稱圖形,小明利用手中的一副三角尺和一個(gè)量角器(如圖所示)進(jìn)行探究.

1)小明在這三件文具中任取一件,結(jié)果是軸對(duì)稱圖形的概率是_________;(取三件中任意一件的可能性相同)

2)小明發(fā)現(xiàn)在、兩把三角尺中各選一個(gè)角拼在一起(無(wú)重疊無(wú)縫隙)會(huì)得到一個(gè)更大的角,若每個(gè)角選取的可能性相同,請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法說(shuō)明拼成的角是鈍角的概率是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,ECD邊上的點(diǎn),過(guò)點(diǎn)EEFBDF

(1)尺規(guī)作圖:在圖中求作點(diǎn)E,使得EF=EC;(保留作圖痕跡,不寫(xiě)作法)

(2)(1)的條件下,連接FC,求∠BCF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,線段AB4,MAB的中點(diǎn),動(dòng)點(diǎn)P到點(diǎn)M的距離是1,連接PB,線段PB繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到線段PC,連接AC,則線段AC長(zhǎng)度的最大值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四張大小、形狀都相同的卡片上分別寫(xiě)有數(shù)字12,34,把它們放入不透明的盒子中搖勻.

1)從中隨機(jī)抽出1張卡片,抽出的卡片上的數(shù)字恰好是偶數(shù)的概率為   

2)從中隨機(jī)抽出1張卡片,記錄數(shù)字后放回?fù)u勻,再抽出一張卡片,記錄數(shù)字.用樹(shù)狀圖或列表法求兩次抽出的卡片上的數(shù)字恰好是兩個(gè)相鄰整數(shù)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案