如圖所示,在平面直角坐標(biāo)系xoy中,正方形OABC的邊長為2cm,點(diǎn)A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線經(jīng)過點(diǎn)A、B和D(4,).
(1)求拋物線的表達(dá)式.
(2)如果點(diǎn)P由點(diǎn)A出發(fā)沿AB邊以2cm/s的速度向點(diǎn)B運(yùn)動,同時點(diǎn)Q由點(diǎn)B出發(fā),沿BC邊以1cm/s的速度向點(diǎn)C運(yùn)動,當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時,另一點(diǎn)也隨之停止運(yùn)動.設(shè)S=PQ2(cm2).
①試求出S與運(yùn)動時間t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;
②當(dāng)S取時,在拋物線上是否存在點(diǎn)R,使得以點(diǎn)P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出R點(diǎn)的坐標(biāo);如果不存在,請說明理由.
(3)在拋物線的對稱軸上求點(diǎn)M,使得M到D、A的距離之差最大,求出點(diǎn)M的坐標(biāo).
(1)拋物線的解析式為:;
(2)①S與運(yùn)動時間t之間的函數(shù)關(guān)系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;
②存在.R點(diǎn)的坐標(biāo)是(3,﹣);
(3)M的坐標(biāo)為(1,﹣).
解析試題分析:(1)設(shè)拋物線的解析式是y=ax2+bx+c,求出A、B、D的坐標(biāo)代入即可;
(2)①由勾股定理即可求出;②假設(shè)存在點(diǎn)R,可構(gòu)成以P、B、R、Q為頂點(diǎn)的平行四邊形,求出P、Q的坐標(biāo),再分為兩種種情況:A、B、C即可根據(jù)平行四邊形的性質(zhì)求出R的坐標(biāo);
(3)A關(guān)于拋物線的對稱軸的對稱點(diǎn)為B,過B、D的直線與拋物線的對稱軸的交點(diǎn)為所求M,求出直線BD的解析式,把拋物線的對稱軸x=1代入即可求出M的坐標(biāo).
試題解析:(1)設(shè)拋物線的解析式是y=ax2+bx+c,
∵正方形的邊長2,
∴B的坐標(biāo)(2,﹣2)A點(diǎn)的坐標(biāo)是(0,﹣2),
把A(0,﹣2),B(2,﹣2),D(4,﹣)代入得:,
解得a=,b=﹣,c=﹣2,
∴拋物線的解析式為:,
答:拋物線的解析式為:;
(2)①由圖象知:PB=2﹣2t,BQ=t,
∴S=PQ2=PB2+BQ2,
=(2﹣2t)2+t2,
即S=5t2﹣8t+4(0≤t≤1).
答:S與運(yùn)動時間t之間的函數(shù)關(guān)系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;
②假設(shè)存在點(diǎn)R,可構(gòu)成以P、B、R、Q為頂點(diǎn)的平行四邊形.
∵S=5t2﹣8t+4(0≤t≤1),
∴當(dāng)S=時,5t2﹣8t+4=,得20t2﹣32t+11=0,
解得t=,t=(不合題意,舍去),
此時點(diǎn)P的坐標(biāo)為(1,﹣2),Q點(diǎn)的坐標(biāo)為(2,﹣),
若R點(diǎn)存在,分情況討論:
(i)假設(shè)R在BQ的右邊,如圖所示,這時QR=PB,RQ∥PB,
則R的橫坐標(biāo)為3,R的縱坐標(biāo)為﹣,
即R(3,﹣),
代入,左右兩邊相等,
∴這時存在R(3,﹣)滿足題意;
(ii)假設(shè)R在QB的左邊時,這時PR=QB,PR∥QB,
則R(1,﹣)代入,,
左右不相等,∴R不在拋物線上.(1分)
綜上所述,存點(diǎn)一點(diǎn)R(3,﹣)滿足題意.
答:存在,R點(diǎn)的坐標(biāo)是(3,﹣);
(3)如圖,M′B=M′A,
∵A關(guān)于拋物線的對稱軸的對稱點(diǎn)為B,過B、D的直線與拋物線的對稱軸的交點(diǎn)為所求M,
理由是:∵M(jìn)A=MB,若M不為L與DB的交點(diǎn),則三點(diǎn)B、M、D構(gòu)成三角形,
∴|MB|﹣|MD|<|DB|,
即M到D、A的距離之差為|DB|時,差值最大,
設(shè)直線BD的解析式是y=kx+b,把B、D的坐標(biāo)代入得:,
解得:k=,b=﹣,
∴y=x﹣,
拋物線的對稱軸是x=1,
把x=1代入得:y=﹣
∴M的坐標(biāo)為(1,﹣);
答:M的坐標(biāo)為(1,﹣).
考點(diǎn):二次函數(shù)綜合題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平行四邊形ABCD中,AB=5,BC=10,F(xiàn)為AD的中點(diǎn),CE⊥AB于E,設(shè)∠ABC=α(60°≤α<90°).
(1)當(dāng)α=60°時,求CE的長;
(2)當(dāng)60°<α<90°時,
①是否存在正整數(shù)k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,請說明理由.
②連接CF,當(dāng)CE2-CF2取最大值時,求tan∠DCF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線y=x2-2x-3與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.
(1)點(diǎn)A的坐標(biāo)為 點(diǎn)B的坐標(biāo)為 ,點(diǎn)C的坐標(biāo)為 ;
(2)設(shè)拋物線y=x2-2x-3的頂點(diǎn)坐標(biāo)為M,求四邊形ABMC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
(1)已知二次函數(shù),請你化成的形式,并在直角坐標(biāo)系中畫出的圖象;
(2)如果,是(1)中圖象上的兩點(diǎn),且,請直接寫出、的大小關(guān)系;
(3)利用(1)中的圖象表示出方程的根來,要求保留畫圖痕跡,說明結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖1,在平面直角坐標(biāo)系中,有一矩形ABCD,其三個頂點(diǎn)的坐標(biāo)分別為A(2,0)、B(8,0)、C(8,3).將直線l:y=-3x-3以每秒3個單位的速度向右運(yùn)動,設(shè)運(yùn)動時間為t秒.
(1)當(dāng)t=_________時,直線l經(jīng)過點(diǎn)A.(直接填寫答案)
(2)設(shè)直線l掃過矩形ABCD的面積為S,試求S>0時S與t的函數(shù)關(guān)系式.
(3)在第一象限有一半徑為3、且與兩坐標(biāo)軸恰好都相切的⊙M,在直線l出發(fā)的同時,⊙M以每秒2個單位的速度向右運(yùn)動,如圖2所示,則當(dāng)t為何值時,直線l與⊙M相切?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
拋物線y=ax2+2x+c與其對稱軸相交于點(diǎn)A(1,4),與x軸正半軸交于點(diǎn)B.
(1)求這條拋物線的函數(shù)關(guān)系式;
(2)在拋物線對稱軸上確定一點(diǎn)C,使△ABC是等腰三角形,求出所有點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)y=x2-2x-3的圖象與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求點(diǎn)A、B、C、D的坐標(biāo),并在下面直角坐標(biāo)系中畫出該二次函數(shù)的大致圖象;
(2)說出拋物線y=x2-2x-3可由拋物線y=x2如何平移得到?
(3)求四邊形OCDB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,直線AB交x軸于點(diǎn)B,交y軸于點(diǎn)A(0,4),直線DM⊥x軸正半軸于點(diǎn)M,交線段AB于點(diǎn)C,DM=6,連接DA,∠DAC=90°,AD:AB=1:2.
(1)求點(diǎn)D的坐標(biāo);
(2)求經(jīng)過O、D、B三點(diǎn)的拋物線的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖(1)是某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線兩端點(diǎn)與水面的距離都是1m,拱橋的跨度為10m,橋洞與水面的最大距離是5m,橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈.現(xiàn)把拱橋的截面圖放在平面直角坐標(biāo)系中,如圖(2).
求(1)拋物線的解析式;
(2)兩盞景觀燈P1、P2之間的水平距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com