【題目】我市高新區(qū)某企業(yè)接到一批產(chǎn)品的生產(chǎn)任務(wù),按要求必須在14天內(nèi)完成.已知每件產(chǎn)品的售價(jià)為60元.工人甲第x天生產(chǎn)的產(chǎn)品數(shù)量為y件,y與x滿足如下關(guān)系:.
(1)工人甲第幾天生產(chǎn)的產(chǎn)品數(shù)量為60件?
(2)設(shè)第x天生產(chǎn)的產(chǎn)品成本為P元/件,P與x的函數(shù)關(guān)系圖象如圖,工人甲第x天創(chuàng)造的利潤為W元,求W與x的函數(shù)關(guān)系式,第幾天時(shí),利潤最大,最大利潤是多少?
【答案】(1)工人甲第10天生產(chǎn)的產(chǎn)品數(shù)量為60件;(2),第11天時(shí),利潤最大,最大利潤是845元.
【解析】
(1)將分別代入和,根據(jù)x的取值范圍選擇合適的解即可;
(2)由函數(shù)圖象,分段求出P與x的函數(shù)關(guān)系,再由總利潤=每件的利潤產(chǎn)品數(shù)量可得W與x的函數(shù)關(guān)系式,結(jié)合關(guān)系式和x的取值范圍確定利潤的最大值即可.
解:(1)根據(jù)題意,得:
∵若8x=60,得:x=>4,不符合題意;
∴5x+10=60,
解得:x=10,
答:工人甲第10天生產(chǎn)的產(chǎn)品數(shù)量為60件;
(2)由函數(shù)圖象知,當(dāng)0≤x≤4時(shí),P=40,
當(dāng)4<x≤14時(shí),設(shè)P=kx+b,
將(4,40)、(14,50)代入,得:,
解得:,∴P=x+36;
①當(dāng)0≤x≤4時(shí),W=(60﹣40)8x=160x.
∵W隨x的增大而增大,∴當(dāng)x=4時(shí),W最大=640元;
②當(dāng)4<x≤14時(shí),W=(60﹣x﹣36)(5x+10)=﹣5x2+110x+240=﹣5(x﹣11)2+845,∴當(dāng)x=11時(shí),W最大=845.
∵845>600,∴當(dāng)x=11時(shí),W取得最大值,845元,
答:第11天時(shí),利潤最大,最大利潤是845元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形中,對角線交于點(diǎn),雙曲線經(jīng)過、兩點(diǎn),若平行四邊形的面積為,則( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,小紅家陽臺上放置了一個(gè)曬衣架.如圖2是曬衣架的側(cè)面示意圖,立桿AB.CD相交于點(diǎn)O,B.D兩點(diǎn)立于地面,經(jīng)測量:
AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,現(xiàn)將曬衣架完全穩(wěn)固張開,扣鏈EF成一條直線,且EF=32cm.
(1)求證:AC∥BD;
(2)求扣鏈EF與立桿AB的夾角∠OEF的度數(shù)(精確到0.1°);
(3)小紅的連衣裙穿在衣架后的總長度達(dá)到122cm,垂掛在曬衣架上是否會拖落到地面?請通過計(jì)算說明理由.
(參考數(shù)據(jù):sin61.9°≈0.882,cos61.9°≈0.471,
tan61.9°≈0.553;可使用科學(xué)記算器)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB為直徑,AD=CD,過點(diǎn)D作DE⊥AB于點(diǎn)E,連接AC交DE于點(diǎn)F.若sin∠CAB=,DF=5,則BC的長為( )
A.8B.10C.12D.16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線L1:過點(diǎn)C(0,﹣3),與拋物線L2:的一個(gè)交點(diǎn)為A,且點(diǎn)A的橫坐標(biāo)為2,點(diǎn)P、Q分別是拋物線L1、拋物線L2上的動(dòng)點(diǎn).
(1)求拋物線L1對應(yīng)的函數(shù)表達(dá)式;
(2)若以點(diǎn)A、C、P、Q為頂點(diǎn)的四邊形恰為平行四邊形,求出點(diǎn)P的坐標(biāo);
(3)設(shè)點(diǎn)R為拋物線L1上另一個(gè)動(dòng)點(diǎn),且CA平分∠PCR,若OQ∥PR,求出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在扇形中,,連接,以為直徑作半圓交于點(diǎn),
(1)過點(diǎn)D作OB的垂線,垂足為E,求證:DE與半圓C相切;
(2)若,,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實(shí)踐:
問題情境:矩形旋轉(zhuǎn)中的數(shù)學(xué)
已知在矩形中,,,以點(diǎn)為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)矩形,旋轉(zhuǎn)角為,得到矩形,點(diǎn)、點(diǎn)、點(diǎn)的對應(yīng)點(diǎn)分別為點(diǎn)、點(diǎn)、點(diǎn).
操作猜想:
(1)如圖①,當(dāng)點(diǎn)落在邊上時(shí),求線段的長度;
深入探究:
(2)如圖②,當(dāng)點(diǎn)落在線段上時(shí),與相交于點(diǎn),連接,求線段的長度;
(3)請從,兩題中任選一題作答,我選______題.
題:如圖③,設(shè)點(diǎn)為邊的中點(diǎn),連接,,,在矩形旋轉(zhuǎn)過程中,的面積是否存在最大值?若存在請直接寫出這個(gè)最大值;若不存在請說明理由.
題:如圖④,設(shè)點(diǎn)為矩形對角線交點(diǎn),連接,,在矩形旋轉(zhuǎn)過程中,的面積是否存在最大值?若存在請直接寫出這個(gè)最大值;若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】哈市紅十字預(yù)計(jì)在2019年兒童節(jié)前為郊區(qū)某小學(xué)發(fā)放學(xué)習(xí)用品,聯(lián)系某工廠加工學(xué)習(xí)用品.機(jī)器每小時(shí)加工產(chǎn)品的數(shù)量比手工每小時(shí)加工產(chǎn)品的數(shù)量的2倍多9件,若加工1800件這樣的產(chǎn)品,機(jī)器加工所用的時(shí)間是手工加工所用時(shí)間的倍.
(1)求手工每小時(shí)加工產(chǎn)品的數(shù)量;
(2)經(jīng)過調(diào)查該小學(xué)的小學(xué)生的總數(shù)不超過1332名,每名小學(xué)生分發(fā)兩個(gè)學(xué)習(xí)用品,工廠領(lǐng)導(dǎo)打算在兩天內(nèi)(48小時(shí))完成任務(wù),打算以機(jī)器加工為主,同時(shí)人工也參與加工(人工與機(jī)器加工不能同時(shí)進(jìn)行),為了保證按時(shí)完成加工任務(wù),人工至少要加工多少小時(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)為圖形上任意一點(diǎn),過點(diǎn)作直線垂足為,記的長度為.
定義一:若存在最大值,則稱其為“圖形到直線的限距離”,記作;
定義二:若存在最小值,則稱其為“圖形到直線的基距離”,記作;
(1)已知直線,平面內(nèi)反比例函數(shù)在第一象限內(nèi)的圖象記作則 .
(2)已知直線,點(diǎn),點(diǎn)是軸上一個(gè)動(dòng)點(diǎn),的半徑為,點(diǎn)在上,若求此時(shí)的取值范圍,
(3)已知直線恒過定點(diǎn),點(diǎn)恒在直線上,點(diǎn)是平面上一動(dòng)點(diǎn),記以點(diǎn)為頂點(diǎn),原點(diǎn)為對角線交點(diǎn)的正方形為圖形,若請直接寫出的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com