【題目】如圖,AB是⊙O的一條弦,點(diǎn)C是⊙O上一動點(diǎn),且∠ACB=30°,點(diǎn)E、F分別是AC、BC的中點(diǎn),直線EF與⊙O交于G、H兩點(diǎn).若⊙O的半徑為8,則GE+FH的最大值為__________ .
【答案】12
【解析】
由點(diǎn)E、F分別是AC、BC的中點(diǎn),根據(jù)三角形中位線定理得出EF=AB為定值,則GE+FH=GH-EF,所以當(dāng)GH取最大值時,GE+FH有最大值.而直徑是圓中最長的弦,故當(dāng)GH為⊙O的直徑時,即可求得GE+FH的最大值.
解:當(dāng)GH為⊙O的直徑時,GE+FH有最大值,當(dāng)GH為直徑時,E點(diǎn)與O點(diǎn)重合,
∴AC也是直徑,AC=16,
∵∠ABC是直徑上的圓周角,
∴∠ABC=90°,
∵∠C=30°,
∴AB=AC=8,
∵點(diǎn)E、F分別為AC、BC的中點(diǎn),
∴EF=AB=4,
∴GE+FH=GH﹣EF=16﹣4=12.
故答案為:12
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】5G時代即將來臨,湖北省提出“建成全國領(lǐng)先、中部一流5G網(wǎng)絡(luò)”的戰(zhàn)略目標(biāo).據(jù)統(tǒng)計(jì),目前湖北5G基站的數(shù)量有1.5萬座,計(jì)劃到2020年底,全省5G基站數(shù)是目前的4倍,到2022年底,全省5G基站數(shù)量將達(dá)到17.34萬座.
(1)按照計(jì)劃,求2020年底到2022年底,全省5G基站數(shù)量的年平均增長率;
(2)若2023年保持前兩年5G基站數(shù)量的年平均增長率不變,到2023年底,全省5G基站數(shù)量能否超過29萬座?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)y=kx2+(3k+2)x+2k+2.
(1)求證:拋物線與x軸有交點(diǎn).
(2)經(jīng)研究發(fā)現(xiàn),無論k為何值,拋物線經(jīng)過某些特定的點(diǎn),請求出這些定點(diǎn).
(3)若y1=2x+2,在﹣2<x<﹣1范圍內(nèi),請比較y1,y的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象過點(diǎn),是中點(diǎn).
(1)求此二次函數(shù)的解析式.
(2)已知,點(diǎn)在拋物線上,點(diǎn)在軸上,當(dāng)四點(diǎn)構(gòu)成以為邊的平行四邊形,求此時點(diǎn)的坐標(biāo).
(3)將拋物線在軸下方的部分沿軸向上翻折,得曲線(為關(guān)于軸的對稱點(diǎn)),在原拋物線軸的上方部分取一點(diǎn),連接,與翻折后的曲線交于點(diǎn). 若的面積是面積的3倍,這樣的點(diǎn)是否存在?若存在,求出點(diǎn)的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,B,C,E是同一直線上的三個點(diǎn), 四邊形ABCD與四邊形CEFG都是正方形.連接BG,DE.
(1)探究BG與DE之間的數(shù)量關(guān)系, 并證明你的結(jié)論;
(2)當(dāng)正方形CEFG繞點(diǎn)C在平面內(nèi)順時針轉(zhuǎn)動到如圖②所示的位置時,線段BG和ED有何關(guān)系? 寫出結(jié)論并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,BC與⊙O相交于點(diǎn)D,點(diǎn)E在⊙O上,且DE=DA,AE與BC交于點(diǎn)F.
(1)求證:FD=CD;
(2)若AE=8,tan∠E=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形的頂點(diǎn),的坐標(biāo)分別為(2,0),(0,3) ,拋物線:經(jīng)過,兩點(diǎn).拋物線的頂點(diǎn)為.
(1)求拋物線的表達(dá)式和點(diǎn)的坐標(biāo);
(2)點(diǎn)是拋物線對稱軸上一動點(diǎn),當(dāng)為等腰三角形時,求所有符合條件的點(diǎn)的坐標(biāo);
(3)如圖2,現(xiàn)將拋物線進(jìn)行平移,保持頂點(diǎn)在直線上,若平移后的拋物線與射線只有一個公共點(diǎn).設(shè)平移后拋物線的頂點(diǎn)橫坐標(biāo)為,求的值或取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖,下列結(jié)論:①abc>0;②2a+b=0;③a-b+c>0;④當(dāng)x≠1時,a+b>ax2+bx:⑤4ac<b2.其中正確的有____________(只填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△DEF中,DF=EF,FG是△DEF的中線,若點(diǎn)Q為△DEF內(nèi)一點(diǎn)且Q滿足∠QDF=∠QED=∠QFE,FQ=9,=,則DQ+EQ=( )
A.10B.C.6+6D.7
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com