【題目】如圖是一副眼鏡鏡片下半部分輪廓對(duì)應(yīng)的兩條拋物線關(guān)于y軸對(duì)稱.AB∥x軸,AB=4cm,最低點(diǎn)C在x軸上,高CH=1cm,BD=2cm.則右輪廓線DFE所在拋物線的函數(shù)解析式為( )
A.y=(x+3)2
B.y=(x+3)2
C.y=(x﹣3)2
D.y=(x﹣3)2
【答案】C
【解析】
試題分析:利用B、D關(guān)于y軸對(duì)稱,CH=1cm,BD=2cm可得到D點(diǎn)坐標(biāo)為(1,1),由AB=4cm,最低點(diǎn)C在x軸上,則AB關(guān)于直線CH對(duì)稱,可得到左邊拋物線的頂點(diǎn)C的坐標(biāo)為(﹣3,0),于是得到右邊拋物線的頂點(diǎn)C的坐標(biāo)為(3,0),然后設(shè)頂點(diǎn)式利用待定系數(shù)法求拋物線的解析式.
解:∵高CH=1cm,BD=2cm,
而B、D關(guān)于y軸對(duì)稱,
∴D點(diǎn)坐標(biāo)為(1,1),
∵AB∥x軸,AB=4cm,最低點(diǎn)C在x軸上,
∴AB關(guān)于直線CH對(duì)稱,
∴左邊拋物線的頂點(diǎn)C的坐標(biāo)為(﹣3,0),
∴右邊拋物線的頂點(diǎn)C的坐標(biāo)為(3,0),
設(shè)右邊拋物線的解析式為y=a(x﹣3)2,
把D(1,1)代入得1=a×(1﹣3)2,解得a=,
故右邊拋物線的解析式為y=(x﹣3)2.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下結(jié)論:
①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.
其中所有正確結(jié)論的序號(hào)是( )
A.③④ B.②③ C.①④ D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若a>b,則下列式子正確的是( )
A. -2015a>-2015b B. 2015a<2015b
C. 2015-a>2015-b D. a-2015>b-2015
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=9,AD=6,∠ADC的平分線交AB于點(diǎn)E,交CB的延長(zhǎng)線于點(diǎn)F,AG⊥DE,垂足為G.若AG=4,則△BEF的面積是( )
A. B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,六邊形ABCDEF∽六邊形GHIJKL,相似比為2:1,則下列結(jié)論正確的是( )
A.∠E=2∠K
B.BC=2HI
C.六邊形ABCDEF的周長(zhǎng)=六邊形GHIJKL的周長(zhǎng)
D.S六邊形ABCDEF=2S六邊形GHIJKL
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,BD、CE分別是∠ABC、∠BCD的角平分線,則圖中的等腰三角形有( )
A.5個(gè) B.4個(gè) C.3個(gè) D.2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,∠A=30°,點(diǎn)D是AB的中點(diǎn),DE⊥BC,垂足為點(diǎn)E,連接CD.
(1)如圖1,DE與BC的數(shù)量關(guān)系是 ;
(2)如圖2,若P是線段CB上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合),連接DP,將線段DP繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)60°,得到線段DF,連接BF,請(qǐng)猜想DE、BF、BP三者之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)若點(diǎn)P是線段CB延長(zhǎng)線上一動(dòng)點(diǎn),按照(2)中的作法,請(qǐng)?jiān)趫D3中補(bǔ)全圖形,并直接寫出DE、BF、BP三者之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知m,n是方程x2﹣2x﹣1=0的兩根,且(7m2﹣14m+a)(3n2﹣6n﹣7)=8,則a的值等于( ).
A.﹣5 B.5 C.﹣9 D.9
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com