【題目】古希臘著名的畢達哥拉斯學派把1,3,6,10…這樣的數(shù)稱為“三角形數(shù)”,而把1,4,9,16…這樣的數(shù)稱為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是( 。
A. 36=15+21 B. 25=9+16 C. 13=3+10 D. 49=18+31
科目:初中數(shù)學 來源: 題型:
【題目】閱讀填空,并完成問題:“絕對值”一節(jié)學習后,數(shù)學老師對同學們的學習進行了拓展.數(shù)學老師向同學們提出了這樣的問題:“在數(shù)軸上,一個數(shù)的絕對值就是表示這個數(shù)的點到原點的距離.那么,如果用P(a)表示數(shù)軸上的點P表示有理數(shù)a,Q(b)表示數(shù)軸上的點Q表示有理數(shù)b,那么點P與點Q的距離是多少?”
(1)聰明的小明經(jīng)過思考回答說:這個問題應該有兩種情況.一種是點P和點Q在原點的兩側(cè),此時點P與點Q的距離是a和b的絕對值的和,即∣a∣+∣b∣.例如:點A(-3)與點B(5)的距離為∣-3∣+∣-5∣= ;
另一種是點P和點Q在原點的同側(cè),此時點P與點Q的距離的a和b中,較大的絕對值減去較小的絕對值,即∣a∣-∣b∣或∣b∣-∣a∣.例如:點A(-3)與點B(-5)的距離為∣-5∣-∣-3∣= ;
你認為小明的說法有道理嗎?如果沒有道理,請你指出錯誤之處;如果有道理,請你模仿求出數(shù)軸上點M()與N()之間和點C(-2)與D(-7)之間的距離.
(2)小穎在聽了小明的方法后,提出了不同的方法,小穎說:我們可以不考慮點P和點Q所在的位置,無論點P與點Q的位置如何,它們之間的距離就是數(shù)a與b的差的絕對值,即∣a-b∣.例如:點A(-3)與點B(5)的距離就是∣-3-5∣= ;點A(-3)與點B(-5)的距離就是∣(-3)-(-5)∣= ;你認為小穎的說法有道理嗎?如果沒有道理,請你指出錯誤之處;如果有道理,請你模仿求出數(shù)軸上點M()與N()之間和點C(-1.5)與D(-3.5)之間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示∠AOB的紙片,OC平分∠AOB,如圖2把∠AOB沿OC對折成∠COB(OA與OB重合),從O點引一條射線OE,使∠BOE=∠EOC,再沿OE把角剪開,若剪開后得到的3個角中最大的一個角為76°,則∠AOB=_____________°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點,連接AC,∠MAC=∠CAB,作CD⊥AM,垂足為D.
(1)求證:CD是⊙O的切線;
(2)若∠ACD=30°,AD=4,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小俊在A處利用高為1.5米的測角儀AB測得樓EF頂部E的仰角為30°,然后前進12米到達C處,又測得樓頂E的仰角為60°,求樓EF的高度.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在梯形紙片ABCD中,AD//BC,AD>CD,將紙片沿過點D的直線折疊,使點C落在AD上的點C處,折痕DE交BC于點E,連結(jié)C′E.
求證:四邊形CDC′E是菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com