【題目】如圖,OAB是邊長(zhǎng)為2的等邊三角形,過點(diǎn)A的直線與z軸交于點(diǎn)E.

(1)求點(diǎn)E的坐標(biāo);

(2)求證OA⊥AE.

【答案】(1)點(diǎn)E(4,0)。(2)證明見解析

【解析】試題分析:(1過點(diǎn)AADEO于點(diǎn)D,根據(jù)等腰三角形的性質(zhì)可得OD=DB=1,再由勾股定理求得AD=,即可得點(diǎn)A的坐標(biāo)為(1 ),用待定系數(shù)法求得直線AE的解析式,再求點(diǎn)E的坐標(biāo)即可;(2利用E點(diǎn)坐標(biāo)得出EO的長(zhǎng),進(jìn)而求出AE的長(zhǎng),再利用勾股定理逆定理得出答案.

試題解析:

1過點(diǎn)AAD⊥EO于點(diǎn)D

∵△OAB是邊長(zhǎng)為2的等邊三角形,

∴OD=DB=1,AB=AO=OB=2,

∴AD=

∴A1,),

A點(diǎn)代入直線y=-得:

,

解得:m=

∴y=-,

y=0時(shí),x=4,

E4,0);

(2) 證明:∵AD=,DE=EO-DO=3,

∴AE=,

∵AO2+AE2=16EO2=16,

∴AO2+AE2=EO2,

∴OA⊥AE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C在線段AB上,AC=8cm,CB=6cm,點(diǎn)M、N分別是AC、BC的中點(diǎn).

1)求線段MN的長(zhǎng);

2)若C為線段AB上任一點(diǎn),滿足AC+CB=a cm,其它條件不變,你能猜想MN的長(zhǎng)度嗎?并說明理由;

3)若C在線段AB的延長(zhǎng)線上,且滿足AC﹣BC=b cm,MN分別為AC、BC的中點(diǎn),你能猜想MN的長(zhǎng)度嗎?并說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABCAD⊥BC,CE⊥AB,垂足分別為D、E,ADCE交于點(diǎn)H,已知EH=EB=3AE=4,則CH的長(zhǎng)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的格點(diǎn)紙中每個(gè)小正方形的邊長(zhǎng)均為1,以小正方形的頂點(diǎn)為圓心,2為半徑做了一個(gè)扇形,用該扇形圍成一個(gè)圓錐的側(cè)面,針對(duì)此做法,小明和小亮通過計(jì)算得出以下結(jié)論:小明說此圓錐的側(cè)面積為 π;小亮說此圓錐的弧長(zhǎng)為 π,則下列結(jié)論正確的是(
A.只有小明對(duì)
B.只有小亮對(duì)
C.兩人都對(duì)
D.兩人都不對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小王購(gòu)買了一套經(jīng)濟(jì)適用房,他準(zhǔn)備將地面鋪上地磚,地面結(jié)構(gòu)如圖所示,根據(jù)圖中的數(shù)據(jù)(單位:m),解答下列問題:

(1)用含x的代數(shù)式表示地面總面積;

(2)當(dāng)x=4,y=2時(shí),鋪1 m2地磚的平均費(fèi)用為30元,那么鋪地磚的總費(fèi)用為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲、乙兩名同學(xué)中選拔一人參加“中華好詩(shī)詞”大賽,在相同的測(cè)試條件下,對(duì)兩人進(jìn)行了五次模擬,并對(duì)成績(jī)(單位:分)進(jìn)行了整理,計(jì)算出 =83分, =82分,繪制成如下尚不完整的統(tǒng)計(jì)圖表. 甲、乙兩人模擬成績(jī)統(tǒng)計(jì)表

甲成績(jī)/分

79

86

82

a

83

乙成績(jī)/分

88

79

90

81

72

根據(jù)以上信息,回答下列問題:
(1)a=
(2)請(qǐng)完成圖中表示甲成績(jī)變化情況的折線.
(3)經(jīng)計(jì)算S2=6,S2=42,綜合分析,你認(rèn)為選拔誰(shuí)參加比賽更合適,說明理由.
(4)如果分別從甲、乙兩人5次的成績(jī)中各隨機(jī)抽取一次成績(jī)進(jìn)行分析,求抽到的兩個(gè)人的成績(jī)都大于82分的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,O是AC與BD的交點(diǎn),過O點(diǎn)的直線EF 與AB、CD的延長(zhǎng)線分別

交于E、F.

(1)證明:△BOE≌△DOF.

(2)當(dāng)EF與AC滿足什么條件時(shí),四邊形AECF是菱形,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=24 cm, BC=8 cm,點(diǎn)P從點(diǎn)A開始沿折線A-B-C-D4 cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)C開始沿CD邊以2 cm/s的速度移動(dòng),如果點(diǎn)P,Q分別從點(diǎn)A,C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)點(diǎn)D時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為ts.當(dāng)t為何值時(shí),四邊形QPBC為矩形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a是一個(gè)長(zhǎng)為2m、寬為2n的長(zhǎng)方形,沿圖中實(shí)現(xiàn)用剪刀均分成四塊小長(zhǎng)方形,然后按圖b的形狀拼成一個(gè)正方形.

(1)圖b中,大正方形的邊長(zhǎng)是   .陰影部分小正方形的邊長(zhǎng)是   ;

(2)觀察圖b,寫出(m+n2,(mn2,mn之間的一個(gè)等量關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案