【題目】在下列給出的條件中,能判定四邊形ABCD為平行四邊形的是()

A.ABBC,CDDAB.AB//CD,ADBC

C.AB//CDACD.AB,CD

【答案】C

【解析】

根據(jù)平行四邊形的判定定理,分別進行判斷,即可得到答案.

解:如圖:

A、根據(jù)AB=BCAD=DC,不能推出四邊形ABCD是平行四邊形,故本選項錯誤;

B、根據(jù)ABCD,AD=BC不能推出四邊形ABCD是平行四邊形,故本選項錯誤;

C、由ABCD,則∠A+D=180°,由∠A=C,則∠D+C=180°,則ADBC,可以推出四邊形ABCD是平行四邊形,故本選項正確;

D、∵∠A=B,∠C=D,∠A+B+C+D=360°,

2B+2C=360°,

∴∠B+C=180°,

ABCD,

但不能推出其它條件,即不能推出四邊形ABCD是平行四邊形,故本選項錯誤;

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一個口袋中裝有3個白球、5個紅球,這些球除了顏色外完全相同,充分搖勻后隨機摸出一球,

1求摸出白球概率是多少?

2)在第一次摸出白球后,如果將這個白球放回,再摸出一球,求兩次摸出的都是白球的概率是多少?(用樹狀圖或列表分析)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:點A是雙曲線在第一象限上的一動點,連接AO并延長交另一分支于點B,以AB為一邊作等邊三角形ABC,點C在第四象限,隨著點A的運動,點C的位置也不斷的變化,但始終在一函數(shù)圖象上運動,則這個函數(shù)的解析式是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小聰在學習圓的性質時發(fā)現(xiàn)一個結論,△ABC內接于⊙O,AD⊥BC,則∠BAD=∠OAC

1)請你幫小聰證明這個結論;

2)運用以上結論解決問題:如圖H△ABC的垂心,若∠ABC的平分線BE⊥HO,⊙O的半徑為10,求弦AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一塊直角三角形的木板,它的一條直角邊AC長為1.5米,面積為1.5平方米.現(xiàn)在要把它加工成一個正方形桌面,甲、乙兩人的加工方法分別如圖(ⅰ)、(ⅱ)所示,記兩個正方形面積分別為S1、S2,請通過計算比較S1S2的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某車站在春運期間為改進服務,抽查了100名旅客從開始在窗口排隊到購到車票所用時間t(以下簡稱購票用時,單位:),得到如下表所示的頻數(shù)分布表.

分組

頻數(shù)

一組

0≤t<5

0

二組

5≤t<10

10

三組

10≤t<15

10

四組

15≤t<20

五組

20≤t<25

30

合計

100

(1)在表中填寫缺失的數(shù)據(jù);

(2)畫出頻數(shù)分布直方圖;

(3)旅客購票用時的平均數(shù)可能落在哪一小組內?

(4)若每增加一個購票窗口可以使平均購票用時降低5,要使平均購票用時不超過10,那么請你決策一下至少要增加幾個窗口?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖①,在△ABC中,∠C=90°,∠BAC的平分線與外角∠CBE的平分線相交于點D,求∠D的度數(shù).

(2)如圖②,將(1)中的條件改為,其它條件不變,請直接寫出的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰△ABC中,AB=BC,∠B=120°,線段AB的垂直平分線分別交AB、AC于點DE,若AC=12,則DE=___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2017年3月全國兩會勝利召開,某學校就兩會期間出現(xiàn)頻率最高的熱詞:A.藍天保衛(wèi)戰(zhàn),B.不動產(chǎn)保護,C.經(jīng)濟增速,D.簡政放權等進行了抽樣調查,每個同學只能從中選擇一個“我最關注”的熱詞,如圖是根據(jù)調查結果繪制的兩幅不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)本次調查中,一共調查了  名同學;

(2)條形統(tǒng)計圖中,m=  ,n=  ;

(3)從該校學生中隨機抽取一個最關注熱詞D的學生的概率是多少?

【答案】(1)300;(2)60,90;(3)從該校學生中隨機抽取一個最關注熱詞D的學生的概率是

【解析】試題分析:(1)根據(jù)A的人數(shù)為105人,所占的百分比為35%,求出總人數(shù),即可解答;

(2)C所對應的人數(shù)為:總人數(shù)×30%,B所對應的人數(shù)為:總人數(shù)﹣A所對應的人數(shù)﹣C所對應的人數(shù)﹣D所對應的人數(shù),即可解答;

(3)根據(jù)概率公式,即可解答.

試題解析:(1)105÷35%=300(人),

故答案為:300;

(2)n=300×30%=90(人),

m=300﹣105﹣90﹣45=60(人).

故答案為:60,90;

(3)從該校學生中隨機抽取一個最關注熱詞D的學生的概率是= ,

答:從該校學生中隨機抽取一個最關注熱詞D的學生的概率是

型】解答
束】
26

【題目】已知正方形ABCD的邊長為8,點EBC的中點,連接AE,并延長交射線DC于點F,將ABE沿著直線AE翻折,點B落在B′處,延長AB′,交直線CD于點M

1)判斷AMF的形狀并證明;

2)將正方形變?yōu)榫匦?/span>ABCD,且AB=6,BC=8,若B′恰好落在對角線AC上時,得到圖2,此時CF=_____, =_____;

3)在(2)的條件下,點EBC邊上.設BEx,ABE沿直線AE翻折后與矩形ABCD重合的面積為y,求yx之間的函數(shù)關系式.

查看答案和解析>>

同步練習冊答案