【題目】為推動陽光體育活動的廣泛開展,引導(dǎo)學(xué)生積極參加體育鍛煉,學(xué)校準(zhǔn)備購買一批運動鞋供學(xué)生借用.現(xiàn)從各年級隨機抽取了部分學(xué)生的鞋號,繪制了如下的統(tǒng)計圖和圖,請根據(jù)圖中提供的信息,解答下列問題:

1)本次接受隨機抽樣調(diào)查的學(xué)生人數(shù)為 人,圖中的m的值為 ,圖“38所在的扇形的圓心角度數(shù)為 ;

2)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)是 ,中位數(shù)是 ;

3)根據(jù)樣本數(shù)據(jù),若學(xué)校計劃購買200雙運動鞋,建議購買36號運動鞋多少雙?

【答案】140,15,36°;(235,36;(350.

【解析】

1)根據(jù)條形統(tǒng)計圖求出總?cè)藬?shù)即可;由扇形統(tǒng)計圖以及單位1,求出m的值即可;用“38的百分比乘以360°,即可得圓心角的度數(shù);

2)找出出現(xiàn)次數(shù)最多的即為眾數(shù),將數(shù)據(jù)按照從小到大順序排列,求出中位數(shù)即可;

3)根據(jù)題意列出算式,計算即可得到結(jié)果.

)本次接受隨機抽樣調(diào)查的學(xué)生人數(shù)為6+12+10+8+4=40,圖①中m的值為100-30-25-20-10=15;

360°×10%=36°

故答案為:40,15,36°

2)∵在這組樣本數(shù)據(jù)中,35出現(xiàn)了12次,出現(xiàn)次數(shù)最多,

∴這組樣本數(shù)據(jù)的眾數(shù)為35

∵將這組樣本數(shù)據(jù)從小到大得順序排列,其中處于中間的兩個數(shù)都為36

∴中位數(shù)為(36+36÷2=36;

故答案為:3536

3)∵在40名學(xué)生中,鞋號為36的學(xué)生人數(shù)比例為25%

∴由樣本數(shù)據(jù),估計學(xué)校各年級中學(xué)生鞋號為36的人數(shù)比例約為25%,

則計劃購買200雙運動鞋,36號的雙數(shù)為:200×25%=50(雙).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上表示數(shù)的點與原點的距離叫做數(shù)的絕對值,記作.數(shù)軸上表示數(shù)的點與表示數(shù)的點的距離記作,如表示數(shù)軸上表示數(shù)3的點與表示數(shù)5的點的距離,表示數(shù)軸上表示數(shù)3的點與表示數(shù)-5的點的距離,表示數(shù)軸上表示數(shù)的點與表示數(shù)3的點的距離.

根據(jù)以上材料回答下列問題:(將結(jié)果直接填寫在答題卡相應(yīng)位置,不寫過程)

1)若,則________,若,則___________;

2)若,則能取到的最小值是_________,最大值是_________

3)關(guān)于的式子的取值范圍是_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的袋中裝有5個只有顏色不同的球,其中3個黃球,2個黑球.

(1)求從袋中同時摸出的兩個球都是黃球的概率;

(2)現(xiàn)將黑球和白球若干個(黑球個數(shù)是白球個數(shù)的2倍)放入袋中,攪勻后,若從袋中摸出一個球是黑球的概率是,求放入袋中的黑球的個數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+2與x軸交于A,B兩點,與y軸交于C點,且點A的坐標(biāo)為(1,0).

(1)求拋物線的解析式及頂點D的坐標(biāo);

(2)判斷ABC的形狀,并證明你的結(jié)論;

(3)點M是拋物線對稱軸上的一個動點,當(dāng)ACM的周長最小時,求點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,AC=,tanB=.半徑為2的⊙C, 分別交AC、BC于點D、E,得到 .

(1)求證:AB為⊙C的切線;

(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC為矩形,點A、點C分別在y軸、x軸的正半軸上,OA,OC的長分別是方程x2-7x+12=0的兩根(OAOC).P為直線AB上一動點,直線PQOP交直線BC于點Q

1)求點B的坐標(biāo);

2)當(dāng)點P在線段AB上運動(不與A,B重合)時,設(shè)點P的橫坐標(biāo)為m,線段CQ的長度為l.求出l關(guān)于m的函數(shù)解析式;

3)在坐標(biāo)平面內(nèi)是否存在點D,使以O、PQ、D為頂點的四邊形為正方形?若存在,請直接寫出D點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】的最小值是______;,則x=_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD在平面直角坐標(biāo)系中,點A(﹣2,0),點B20),點D0,3),點C在第一象限.

1)求直線AD的解析式;

2)若Ey軸上的點,求EBC周長的最小值;

3)若點Q在平面直角坐標(biāo)系內(nèi),點P在直線AD上,是否存在以DPDB為鄰邊的菱形DBQP?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的頂點為P﹣2,2),與y軸交于點A0,3).若平移該拋物線使其頂點P沿直線移動到點P2,﹣2),點A的對應(yīng)點為A,則拋物線上PA段掃過的區(qū)域(陰影部分)的面積為______

查看答案和解析>>

同步練習(xí)冊答案