【題目】某公司計劃投入50萬元,開發(fā)并生產(chǎn)甲乙兩種產(chǎn)品,根據(jù)市場調(diào)查預(yù)計甲產(chǎn)品的年獲利y1(萬元)與投入資金x(萬元)成正比例,乙產(chǎn)品的年獲利y2(萬元)與投入資金x(萬元)的平方成正比例,設(shè)該公司投入乙產(chǎn)品x(萬元),兩種產(chǎn)品的年總獲利為y萬元(x≥0),得到了表中的數(shù)據(jù).

x(萬元)

20

30

y(萬元)

10

13

(1)求yx的函數(shù)關(guān)系式;

(2)該公司至少可獲得多少利潤?請你利用所學(xué)的數(shù)學(xué)知識對該公司投入資金的分配提出合理化建

議,使他能獲得最大利潤,并求出最大利潤是多少?

(3)若從年總利潤扣除投入乙產(chǎn)品資金的a倍(a≤1)后,剩余利潤隨x增大而減小,求a的取值

范圍.

【答案】(1) ;(2)見解析;(3) 0.8≤a≤1.

【解析】試題分析(1)設(shè)y1=k1(50-x),y2= k2 x,y= k1(50-x)+ k2 x,代入表格數(shù)據(jù)求出k1,k2的值,即可得到結(jié)論;

(2)由題意求出x的范圍,由二次函數(shù)的性質(zhì)即可得到結(jié)論

(3)求出的表達式,利用二次函數(shù)的性質(zhì)解答即可

試題解析:(1)由題意可得y1=k1(50-x),y2= k2 x,∴y= k1(50-x)+ k2 x,由表格可得,解得=;

(2)由題意可知50≥x≥0.∵a=>0,∴當(dāng)x=10,y最小=9(萬元),

當(dāng)x=50,y最大=25(萬元),此時投入甲0萬元,投入乙50萬元

(3)= =,對稱軸為x=50a+10,

a=>0,∴當(dāng)x≤50a+10剩余利潤隨x增大而減小,50≥x≥0,

當(dāng)50≤50a+10,a≥0.8,剩余利潤隨x增大而減小a≤1,∴0.8≤a≤1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,點M、N分別在ADBC上,且AMCN,MNAC交于點O,連接DO,若∠BAC28°,則∠ODC_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年5月份,某校九年級學(xué)生參加了南寧市中考體育考試,為了了解該校九年級(1)班同學(xué)的中考體育情況,對全班學(xué)生的中考體育成績進行了統(tǒng)計,并繪制以下不完整的頻數(shù)分布表(如表)和扇形統(tǒng)計圖(如圖),根據(jù)圖表中的信息解答下列問題:

(1)求全班學(xué)生人數(shù)和m的值.

(2)直接出該班學(xué)生的中考體育成績的中位數(shù)落在哪個分?jǐn)?shù)段.

(3)該班中考體育成績滿分共有3人,其中男生2人,女生1人,現(xiàn)需從這3人中隨機選取2人到八年級進行經(jīng)驗交流,請用“列表法”或“畫樹狀圖法”求出恰好選到一男一女的概率.

分組

分?jǐn)?shù)段(分)

頻數(shù)

A

36x41

2

B

41x46

5

C

46x51

15

D

51x56

m

E

56x61

10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校要求200名學(xué)生進行社會調(diào)查每人必須完成3~6份報告,調(diào)查結(jié)束后隨機抽查了20名學(xué)生每人完成報告的份數(shù)并分為四類,A3;B4;C5;D6 各類的人數(shù)繪制成扇形圖如圖1和尚未完整的條形圖如圖2),回答下列問題

1請將條形統(tǒng)計圖2補充完整;

2寫出這20名學(xué)生每天完成報告份數(shù)的眾數(shù) 份和中位數(shù)

3在求出20名學(xué)生每人完成報告份數(shù)的平均數(shù)時,小明是這樣分析的 第一步求平均數(shù)的公式是=+++…+

第二步在該問題中,n=4 =3 =4, =5 =6

第三步=3+4+5+6=4.5

小明的分析對不對?如果對,請說明理由,如果不對請求出正確結(jié)果;

4現(xiàn)從“D類”的學(xué)生中隨機選出2人進行采訪,若“D類”的學(xué)生中只有1 男生,則所選兩位同學(xué)中有男同學(xué)的概率是多少?請用列表法或樹狀圖的方法求解

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l的解析式y=kx+3(k<0)與y軸交于A點,

x軸交于點B.點C的坐標(biāo)為(4,2).

(1)點A的坐標(biāo)為 ;

(2)若將△AOB沿直線l折疊,能否使點O與點C重合,若能求此時直線l的解析式;若不能,請說明理由。

(3)若點C在直線l的下方,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=∠ACB,以AC為直徑的⊙O分別交AB、BC于點M、N,點PAB的延長線上,且∠CAB=2∠BCP.

(1)求證:直線CP是⊙O的切線;

(2)若BC=2,sin∠BCP=,求⊙O的半徑及△ACP的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點A(0,a),B(b,12-b),C(2a-3,0),0<a<b<12,若OB平分∠AOC,且AB=BC,則a+b的值為( )

A. 9或12B. 9或11C. 10或11D. 10或12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】十一長假期間,小張和小李決定騎自行車外出旅游,兩人相約一早從各自家中出發(fā),已知兩家相距10千米,小張出發(fā)必過小李家.

(1)若兩人同時出發(fā),小張車速為20千米,小李車速為15千米,經(jīng)過多少小時能相遇?

(2)若小李的車速為10千米,小張?zhí)崆?/span>20分鐘出發(fā),兩人商定小李出發(fā)后半小時二人相遇,則小張的車速應(yīng)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一副直角三角尺的直角頂點C疊放在一起.

1)若∠DCE35°,∠ACB   ;若∠ACB140°,則∠DCE   

2)猜想∠ACB與∠DCE的大小有何特殊關(guān)系,并說明理由;

3)若保持三角尺BCE(其中∠B45°)不動,三角尺ACDCD邊與CB邊重合,然后將三角尺ACD(其中∠D30°)繞點C按逆時針方向任意轉(zhuǎn)動一個角度∠BCD

設(shè)∠BCDαα90°

①∠ACB能否是∠DCE4倍?若能求出α的值;若不能說明理由.

②當(dāng)這兩塊三角尺各有一條邊互相垂直時直接寫出α的所有可能值.

查看答案和解析>>

同步練習(xí)冊答案