13、如圖,已知OA=OB,點C在OA上,點D在OB上,OC=OD,AD與BC相交于點E,那么圖中全等的三角形共有
4
對.
分析:由于OA=OB,∠AOD=∠BOC,OC=OD,利用SAS可證△AOD≌△BOC,再利用全等三角形的性質(zhì),可知∠A=∠B;在△ACE和△BDE中,∠A=∠B,∠AEC=∠BED,而OA-OC=OB-OD,即AC=BD,利用AAS可證△ACE≌△BDE;再利用全等三角形的性質(zhì),可得AE=BE,在△AOE和△BOE中,由于OA=OB,∠A=∠B,AE=BE,利用SAS可證△AOE≌△BOE;再利用全等三角形的性質(zhì),可得∠COE=∠DOE,而OE=OE,OC=OD,利用SAS可證△COE≌△DOE.
解答:解:∵OA=OB,∠AOD=∠BOC,OC=OD,
∴△AOD≌△BOC,
∴∠A=∠B,
又∵∠AEC=∠BED,OA-OC=OB-OD,
即AC=BD,
∴△ACE≌△BDE,
∴AE=BE,
又∵OA=OB,∠A=∠B,
∴△AOE≌△BOE,
∴∠COE=∠DOE,
又∵OE=OE,OC=OD,
∴△COE≌△DOE.
故全等的三角形一共有4對.
故填4.
點評:本題利用了全等三角形的判定和性質(zhì).做題時要從已知開始結(jié)合判定方法逐個驗證,做到由易到難,不重不漏.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知OA=OB,數(shù)軸上點C表示的數(shù)是2,那數(shù)軸上線段AC的長度是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,已知OA=OB,點C在OA上,點D在OB上,OC=OD,AD與BC相交于點E,那么圖中全等的三角形共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知OA⊥OB,OA=4,OB=3,以AB為邊作矩形ABCD,使AD=a,過點D作DE垂直O(jiān)A的延精英家教網(wǎng)長線交于點E.
(1)證明:△OAB∽△EDA;
(2)當(dāng)a為何值時,△OAB與△EDA全等?請說明理由,并求出此時點C到OE的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知OA=OB,那么數(shù)軸上點A與點C的距離是
 
個單位長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知OA=OB,OC=OD,下列結(jié)論中(1)∠A=∠B;(2)DE=CE;(3)連OE,OE平分∠O,正確的有
(1)、(2)、(3)
(1)、(2)、(3)

查看答案和解析>>

同步練習(xí)冊答案