【題目】下列說法正確的是( 。

A. 在RtABC中,C=90°,若tanA= ,則a=3,b=4

B. ABC三邊之比為1: ,且A為最小角,則sinA=

C. 對(duì)于銳角α,必有sinαcosα

D. 在RtABC中,若C=90°,則sin2A+cos2A=1

【答案】D

【解析】解:A. 在RtABC中,C=90°,若tanA= ,則a=3x,b=4x,故A錯(cuò)誤.

B. ABC三邊之比為1: ,且A為最小角,則sinA=,B錯(cuò)誤.

C. 對(duì)于α>45°,必有sinα>cosα,當(dāng)0<α<45°時(shí),sinα<cosα,C錯(cuò)誤

D. 在RtABC中,若C=90°,則sin2A+cos2A=1,所以D選項(xiàng)是正確的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一件服裝標(biāo)價(jià)200元,若以6折銷售,仍可獲利20%,則這件服裝的進(jìn)價(jià)是(
A.100元
B.105元
C.108元
D.118元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程或方程組解應(yīng)用題:

某校為美化校園,計(jì)劃對(duì)一些區(qū)域進(jìn)行綠化,安排了甲、乙兩個(gè)工程隊(duì)完成,已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化的面積的2倍,并且兩隊(duì)在獨(dú)立完成面積為400m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4天,求甲、乙兩工程隊(duì)每天能完成綠化的面積分別是多少m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正比例函數(shù)y=kx經(jīng)過點(diǎn)A , 點(diǎn)A在第四象限,過點(diǎn)AAHx軸,垂足為點(diǎn)H , 點(diǎn)A的橫坐標(biāo)為3,且△AOH的面積為3.
(1)求正比例函數(shù)的解析式;
(2)在x軸上能否找到一點(diǎn)P , 使△AOP的面積為5?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算錯(cuò)誤的是( )
A. =1
B.x2+x2=2x4
C.|a|=|-a|
D. =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分12分)如圖,拋物線y=x2﹣2x﹣3與x軸交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),直線l與拋物線交于A、C兩點(diǎn),其中C點(diǎn)的橫坐標(biāo)為2.

(1)求A、B、C三點(diǎn)的坐標(biāo);

(2)在拋物線的對(duì)稱軸上找到點(diǎn)P,使得PBC的周長(zhǎng)最小,并求出點(diǎn)P的坐標(biāo);

(3)點(diǎn)G拋物線上的動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使A、C、F、G為頂點(diǎn)四邊形是平行四邊形?如果存在,請(qǐng)直接寫出F點(diǎn)坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,拋物線y=ax2+bx+c與直線y=﹣x+6分別交于x軸和y軸上同一點(diǎn),交點(diǎn)分別是點(diǎn)B和點(diǎn)C,且拋物線的對(duì)稱軸為直線x=4

1)求出拋物線與x軸的兩個(gè)交點(diǎn)A,B的坐標(biāo).

(2)試確定拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為鼓勵(lì)大眾創(chuàng)業(yè),萬眾創(chuàng)新,某市政府出臺(tái)了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價(jià)提供產(chǎn)品給大學(xué)畢業(yè)生自主銷售,成本價(jià)與出廠價(jià)之間的差價(jià)由政府承擔(dān).李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價(jià)為每件10元,出廠價(jià)為每件12元,每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系近似滿足一次函數(shù):y=﹣10x+500.
(1)李明在開始創(chuàng)業(yè)的第一個(gè)月將銷售單價(jià)定為20元,那么政府這個(gè)月為他承擔(dān)的總差價(jià)為多少元?
(2)設(shè)李明獲得的利潤(rùn)為w(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?
(3)物價(jià)部門規(guī)定,這種節(jié)能燈的銷售單價(jià)不得高于25元.如果李明想要每月獲得的利潤(rùn)不低于3000元,那么政府為他承擔(dān)的總差價(jià)最少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,分別與∠ABC,∠ACB相鄰的外角的平分線相交于F,連接AF,下列結(jié)論正確的是( )

A.AF平分BC
B.AF平分∠BAC
C.AF⊥BC
D.以上結(jié)論都正確

查看答案和解析>>

同步練習(xí)冊(cè)答案