【題目】將函數(shù)y=f(x)的圖象向左平移φ(0<φ<π)個單位后得到函數(shù)g(x)=sin2x的圖象,當(dāng)x1 , x2滿足時,|f(x1)﹣g(x2)|=2, ,則φ的值為( )
A.
B.
C.
D.
【答案】D
【解析】解:將函數(shù)y=f(x)的圖象向左平移φ(0<φ<π)個單位后得到函數(shù)g(x)=sin2x的圖象,故f(x)=sin(2x﹣2φ), 當(dāng)x1 , x2滿足時|f(x1)﹣g(x2)|=2 時, ,
由題意可得:有|x1﹣x2|min= ﹣φ= ,
結(jié)合范圍0<φ< ,解得:φ= ,
故選:D.
【考點精析】通過靈活運(yùn)用函數(shù)y=Asin(ωx+φ)的圖象變換,掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自2016年國慶后,許多高校均投放了使用手機(jī)就可隨用的共享單車.某運(yùn)營商為提高其經(jīng)營的A品牌共享單車的市場占有率,準(zhǔn)備對收費(fèi)作如下調(diào)整:一天中,同一個人第一次使用的車費(fèi)按0.5元收取,每增加一次,當(dāng)次車費(fèi)就比上次車費(fèi)減少0.1元,第6次開始,當(dāng)次用車免費(fèi).具體收費(fèi)標(biāo)準(zhǔn)如下:
使用次數(shù) | 0 | 1 | 2 | 3 | 4 | 5(含5次以上) |
累計車費(fèi) | 0 | 0.5 | 0.9 | a | b | 1.5 |
同時,就此收費(fèi)方案隨機(jī)調(diào)查了某高校100名師生在一天中使用A品牌共享單車的意愿,得到如下數(shù)據(jù):
使用次數(shù) | 0 | 1 | 2 | 3 | 4 | 5 |
人數(shù) | 5 | 15 | 10 | 30 | 25 | 15 |
(Ⅰ)寫出a,b的值;
(Ⅱ)已知該校有5000名師生,且A品牌共享單車投放該校一天的費(fèi)用為5800元.試估計:收費(fèi)調(diào)整后,此運(yùn)營商在該校投放A品牌共享單車能否獲利?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“一帶一路”倡議下,我國已成為設(shè)施聯(lián)通,貿(mào)易暢通的促進(jìn)者,同時也帶動了我國與沿線國家的貨物交換的增速發(fā)展,如圖是湘成物流園2016年通過“海、陸(汽車)、空、鐵”四種模式運(yùn)輸貨物的統(tǒng)計圖. 請根據(jù)統(tǒng)計圖解決下面的問題:
(1)該物流園2016年貨運(yùn)總量是多少萬噸?
(2)該物流園2016年空運(yùn)貨物的總量是多少萬噸?并補(bǔ)全條形統(tǒng)計圖;
(3)求條形統(tǒng)計圖中陸運(yùn)貨物量對應(yīng)的扇形圓心角的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店嘗試用單價隨天數(shù)而變化的銷售模式銷售一種商品,利用30天的時間銷售一種成本為10元/件的商品售后,經(jīng)過統(tǒng)計得到此商品單價在第x天(x為正整數(shù))銷售的相關(guān)信息,如表所示:
銷售量n(件) | n=50﹣x |
銷售單價m(元/件) | 當(dāng)1≤x≤20時, |
當(dāng)21≤x≤30時, |
(1)請計算第15天該商品單價為多少元/件?
(2)求網(wǎng)店銷售該商品30天里所獲利潤y(元)關(guān)于x(天)的函數(shù)關(guān)系式;
(3)這30天中第幾天獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某銷售公司為了解員工的月工資水平,從1000位員工中隨機(jī)抽取100位員工進(jìn)行調(diào)查,得到如下的頻率分布直方圖:
(1)試由此圖估計該公司員工的月平均工資;
(2)該公司工資發(fā)放是以員工的營銷水平為重要依據(jù)來確定的,一般認(rèn)為,工資低于4500元的員工屬于學(xué)徒階段,沒有營銷經(jīng)驗,若進(jìn)行營銷將會失敗;高于4500元的員工是具備營銷成熟員工,進(jìn)行營銷將會成功.現(xiàn)將該樣本按照“學(xué)徒階段工資”、“成熟員工工資”分為兩層,進(jìn)行分層抽樣,從中抽出5人,在這5人中任選2人進(jìn)行營銷活動.活動中,每位員工若營銷成功,將為公司贏得3萬元,否則公司將損失1萬元,試問在此次比賽中公司收入多少萬元的可能性最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2AD,E為邊AB的中點,將△ADE沿直線DE翻轉(zhuǎn)成△A1DE(A1平面ABCD),若M、O分別為線段A1C、DE的中點,則在△ADE翻轉(zhuǎn)過程中,下列說法錯誤的是( )
A.與平面A1DE垂直的直線必與直線BM垂直
B.異面直線BM與A1E所成角是定值
C.一定存在某個位置,使DE⊥MO
D.三棱錐A1﹣ADE外接球半徑與棱AD的長之比為定值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點P是曲線C1:(x﹣2)2+y2=4上的動點,以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,以極點O為中心,將點P逆時針旋轉(zhuǎn)90°得到點Q,設(shè)點Q的軌跡方程為曲線C2 .
(1)求曲線C1 , C2的極坐標(biāo)方程;
(2)射線θ= 與曲線C1 , C2分別交于A,B兩點,定點M(2,0),求△MAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:(x﹣1)2+y2= ,一動圓與直線x=﹣ 相切且與圓C外切. (Ⅰ)求動圓圓心P的軌跡T的方程;
(Ⅱ)若經(jīng)過定點Q(6,0)的直線l與曲線T相交于A、B兩點,M是線段AB的中點,過M作x軸的平行線與曲線T相交于點N,試問是否存在直線l,使得NA⊥NB,若存在,求出直線l的方程,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com