3.如圖,P是⊙O外一點,PC為切線,割線PAB經過圓心O.
(1)若PB=12,PC=4$\sqrt{3}$,求⊙O的半徑長;
(2)作∠BPC的角平分線交BC于D,求∠CDP的度數(shù).

分析 (1)連結OC,如圖,設⊙O的半徑為r,則OC=r,PO=PB-OB=12-r,根據(jù)切線的性質得∠PCO=90°,則利用勾股定理得到r2+(4$\sqrt{3}$)2=(12-r)2,然后解方程即可;
(2)在Rt△POC中,由于OC=4,OP=8,根據(jù)含30度的直角三角形三邊的關系得∠OPC=30°,然后根據(jù)角平分線定義得到∠CDP的度數(shù).

解答 解:(1)連結OC,如圖,設⊙O的半徑為r,則OC=r,PO=PB-OB=12-r,
∵PC為切線,
∴OC⊥PC,
∴∠PCO=90°,
在Rt△POC中,∵OC2+PC2=PO2,
∴r2+(4$\sqrt{3}$)2=(12-r)2,解得r=4,
即⊙O的半徑為4;
(2)在Rt△POC中,∵OC=4,PO=8,
∴∠OPC=30°,
∵PD平分∠BPC,
∴∠CDP=15°.

點評 本題考查了切線的性質:圓的切線垂直于經過切點的半徑.運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

3.當x=$\frac{1}{4}$時,求$\frac{x\sqrt{4x}}{2}$+6x$\sqrt{\frac{x}{9}}$-2x2$\sqrt{\frac{1}{x}}$的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

14.某股民上星期五買進某公司股票1000股,每股25元,下表為本周內每日該股票的漲跌情況:(單價:元)
星期
每股漲跌
(與前一天比較)
+2-0.5+1.5-1.8+0.8
(1)星期三收盤時,每股是多少元?
(2)本周內最高價是每股多少元?最低價是每股多少元?
(3)已知該股民買進股票時付了0.15%的手續(xù)費,賣出時需付成交額0.15%的手續(xù)費和0.1‰的交易稅,如果他一直觀望到星期五才將股票全部賣出,請算算他本周的收益如何?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

11.先化簡,再求值:($\frac{{x}^{2}}{x-1}$-$\frac{{x}^{2}}{1-x}$)÷$\frac{2x}{{x}^{2}-1}$,其中x為方程x2+x-3=0的根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

18.如圖,已知AB⊥CD,垂足為B,EF是經過B點的一條直線,∠EBD=145°,則∠ABF的度數(shù)為55°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

8.下列運算正確的是( 。
A.若x=y,則$\frac{x}{a}$=$\frac{y}{a}$B.若$\frac{x}{y}$(y≠0),則$\frac{xy}{{y}^{2}}$
C.若$\frac{x}{y}$(y≠0),則$\frac{x+a}{y+a}$D.若x2=y2,則x=y

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

15.若a=b,則下列結論中不一定成立的是( 。
A.2a=a+bB.a-b=0C.a2=abD.$\frac{a}=1$

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

12.一個圓錐的底面半徑為10cm,母線長為20cm,則該圓錐的側面積是200πcm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

13.如圖①,已知二次函數(shù)y=-x2+2x+3的圖象與x軸交于點A、B,與y軸交于點C.
(1)求△ABC的面積.
(2)點M在OB邊上以每秒1個單位的速度從點O向點B運動,點N在BC邊上以每秒$\sqrt{2}$個單位得速度從點B向點C運動,兩個點同時開始運動,同時停止.設運動的時間為t秒,試求當t為何值時,以B、M、N為頂點的三角形與△BOC相似?
(3)如圖②,點P為拋物線上的動點,點Q為對稱軸上的動點,是否存在點P、Q,使得以P、Q、C、B為頂點的四邊形是平行四變形?若存在,直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案