【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點(diǎn)D是直線AB上的一動(dòng)點(diǎn)(不和A、B重合),BE⊥CD于E,交直線AC于F.
(1)點(diǎn)D在邊AB上時(shí),證明:AB=FA+BD;
(2)點(diǎn)D在AB的延長(zhǎng)線或反向延長(zhǎng)線上時(shí),(1)中的結(jié)論是否成立?若不成立,請(qǐng)畫出圖形并直接寫出正確結(jié)論.
【答案】(1)證明見解析;(2)見解析.
【解析】
(1)易證∠FBA=∠FCE,結(jié)合條件容易證到△FAB≌△DAC,從而有FA=DA,就可得到AB=AD+BD=FA+BD.
(2)由于點(diǎn)D的位置在變化,因此線段AF、BD、AB之間的大小關(guān)系也會(huì)相應(yīng)地發(fā)生變化,只需畫出圖象并借鑒(1)中的證明思路就可解決問(wèn)題.
(1)如圖1,∵BE⊥CD,即∠BEC=90°,∠BAC=90°,
∴∠F+∠FBA=90°,∠F+∠FCE=90°.
∴∠FBA=∠FCE.
∵∠FAB=180°-∠DAC=90°,
∴∠FAB=∠DAC.
∵AB=AC,
∴△FAB≌△DAC.
∴FA=DA.
∴AB=AD+BD=FA+BD.
(2)如圖2,當(dāng)D在AB延長(zhǎng)線上時(shí),AF=AB+BD,
理由是:同理得:△FAB≌△DAC,
∴AF=AD=AB+BD;
如圖3,當(dāng)D在AB反向延長(zhǎng)線上時(shí),BD=AB+AF,
理由是:同理得:△FAB≌△DAC,
∴AF=AD,
∴BD=AB+AD=AB+AF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算(直接寫出結(jié)果):
(1)﹣2+5
(2)﹣17+(﹣3)
(3)(﹣10)﹣(-6)
(4)(﹣1)×(﹣12)
(5)﹣2×(﹣3)2
(6)﹣1÷(﹣5)
(7)﹣1200+(﹣1)200
(8)﹣0.125×(﹣2)3
(9)|﹣|
(10)(-)3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)課上,張老師出示了問(wèn)題:如圖1,AC,BD是四邊形ABCD的對(duì)角線,若∠ACB=∠ACD=∠ABD=∠ADB=60°,則線段BC,CD,AC三者之間有何等量關(guān)系?
經(jīng)過(guò)思考,小明展示了一種正確的思路:如圖2,延長(zhǎng)CB到E,使BE=CD,連接AE,證得△ABE≌△ADC,從而容易證明△ACE是等邊三角形,故AC=CE,所以AC=BC+CD.
小亮展示了另一種正確的思路:如圖3,將△ABC繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,使AB與AD重合,從而容易證明△ACF是等邊三角形,故AC=CF,所以AC=BC+CD.
在此基礎(chǔ)上,同學(xué)們作了進(jìn)一步的研究:
(1)小穎提出:如圖4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改為“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它條件不變,那么線段BC,CD,AC三者之間有何等量關(guān)系?針對(duì)小穎提出的問(wèn)題,請(qǐng)你寫出結(jié)論,并給出證明.
(2)小華提出:如圖5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改為“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它條件不變,那么線段BC,CD,AC三者之間有何等量關(guān)系?針對(duì)小華提出的問(wèn)題,請(qǐng)你寫出結(jié)論,不用證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,∠A+∠D=180°,∠1=3∠2,∠2=24°,點(diǎn)P是BC上的一點(diǎn).
(1)請(qǐng)寫出圖中∠1的一對(duì)同位角,一對(duì)內(nèi)錯(cuò)角,一對(duì)同旁內(nèi)角;
(2)求∠EFC與∠E的度數(shù);
(3)若∠BFP=46°,請(qǐng)判斷CE與PF是否平行?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,每個(gè)小正方形邊長(zhǎng)都是1.
(1)按要求作圖:
①△ABC關(guān)于x軸對(duì)稱的圖形△A1B1C1;
②將△A1B1C1向右平移7個(gè)單位得到△A2B2C2.
(2)回答下列問(wèn)題:
①△A2B2C2中頂點(diǎn)B2坐標(biāo)為 .
②若P(a,b)為△ABC邊上一點(diǎn),則按照(1)中①、②作圖,點(diǎn)P對(duì)應(yīng)的點(diǎn)P2的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸交于點(diǎn)B、與y軸交于點(diǎn)A,與反比例函數(shù)y= 的圖象在第二象限交于C,CE⊥x軸,垂足為點(diǎn)E,tan∠ABO= ,OB=4,OE=2.
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)D是反比例函數(shù)圖象在第四象限內(nèi)的點(diǎn),過(guò)點(diǎn)D作DF⊥y軸,垂足為點(diǎn)F,連接OD、BF.如果S△BAF=4S△DFO , 求點(diǎn)D的坐標(biāo).
(3)若動(dòng)點(diǎn)D在反比例函數(shù)圖象的第四象限上運(yùn)動(dòng),當(dāng)線段DC與線段DB之差達(dá)到最大時(shí),求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)正比例函數(shù)y1=k1x的圖象與一個(gè)一次函數(shù)y2=k2x+b的圖象相交于點(diǎn)A(3,4),且一次函數(shù)y2的圖像與y軸相交于點(diǎn)B(0,—5),與x軸交于點(diǎn)C.
(1)判斷△AOB的形狀并說(shuō)明理由;
(2)請(qǐng)寫出當(dāng)y1>y2時(shí)x的取值范圍;
(3)若將直線AB繞點(diǎn)A旋轉(zhuǎn),使△AOC的面積為8,求旋轉(zhuǎn)后直線AB的函數(shù)解析式;
(4)在x軸上求一點(diǎn)P使△POA為等腰三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為了了解九年級(jí)學(xué)生的體能,從九年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行體能測(cè)試,測(cè)試的結(jié)果分為A、B、C、D四個(gè)等級(jí),并根據(jù)測(cè)試成績(jī)繪制了如下兩幅不完整的統(tǒng)計(jì)圖.
(1)這次抽樣調(diào)查的樣本容量是多少?B等級(jí)的有多少人?并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)在扇形統(tǒng)計(jì)圖中,C等級(jí)對(duì)應(yīng)扇形的圓心角為多少度?
(3)該校九年級(jí)學(xué)生有1500人,估計(jì)D等級(jí)的學(xué)生約有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com