如圖PA是△ABC的外接圓O的切線,A是切點,PD∥AC,且PD與AB、AC分別相交于E、D.
求證:(1)∠PAE=∠BDE;
(2)EA•EB=ED•EP.

【答案】分析:(1)由于AP是切線,那么∠PAE=∠ACB,而PD∥AC,于是有∠PDB=∠BDE,那么∠PAE=∠BDE;
(2)由(1)得∠PAE=∠BDE,又∠AEP=∠DEB,從而可得△AEP∽△DEB,于是有AE:PE=DE:BE,易得證.
解答:證明:如右圖所示,
(1)∵AP是切線,
∴∠PAE=∠ACB,
又∵PD∥AC,
∴∠PDB=∠BDE,
∴∠PAE=∠BDE;

(2)由(1)得∠PAE=∠BDE,
又∵∠AEP=∠DEB,
∴△AEP∽△DEB,
∴AE:PE=DE:BE,
∴EA•EB=ED•EP.
點評:本題考查了切線的性質(zhì)、平行線的性質(zhì)、弦切角定理、相似三角形的判定和性質(zhì).解題的關(guān)鍵是利用弦切角定理知道∠PAE=∠ACB.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖PA是△ABC的外接圓O的切線,A是切點,PD∥AC,且PD與AB、AC分別相交于E、D.
求證:(1)∠PAE=∠BDE;
(2)EA•EB=ED•EP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

附加題:
(1)如圖,AB、CD是⊙O的兩條弦,它們相交于點P,連接AD、BD,已知AD=BD=4,PC=6,那么CD的長是
 

精英家教網(wǎng)
(2)閱讀材料:如圖,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高(h)”.我們可得出一種計算三角形面積的新方法:S△ABC=
1
2
ah
,即三角形面積等于水平寬與鉛垂高乘積的一半.
精英家教網(wǎng)
解答下列問題:
如圖,拋物線頂點坐標(biāo)為點C(1,4),交x軸于點A(3,0),交y軸于點B.
①求拋物線和直線AB的解析式;
②點P是拋物線(在第一象限內(nèi))上的一個動點,連接PA,PB,當(dāng)P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB;
③點P是拋物線(在第一象限內(nèi))上的一個動點,是否存在一點P,使S△PAB=
9
8
S△CAB,若存在,求出P點的坐標(biāo);若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2013•豐南區(qū)一模)閱讀材料:如圖,過△ABC的三個頂點分別作出水平垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高(h)”.我們可以得出一種計算三角形面積的新方法:S△ABC=
12
ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:如圖,拋物線頂點坐標(biāo)為點C(1,4)交x軸于點A,交y軸于點B(0,3)

(1)求拋物線解析式和線段AB的長度;
(2)點P是拋物線(在第一象限內(nèi))上的一個動點,連接PA,PB,當(dāng)P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB;
(3)在第一象限內(nèi)拋物線上求一點P,使S△PAB=S△CAB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖PA是△ABC的外接圓O的切線,A是切點,PD∥AC,且PD與AB、AC分別相交于E、D.
求證:(1)∠PAE=∠BDE;
(2)EA•EB=ED•EP.

查看答案和解析>>

同步練習(xí)冊答案