【題目】如圖是某單位職工的年齡(取正整數(shù))的頻率分布直方圖,根據(jù)圖中提供的信息,回答下列問題:

(1)該單位共有職工多少人?

(2)不小于38歲但小于44歲的職工人數(shù)占職工總?cè)藬?shù)的百分比是多少?

(3)如果42歲的職工有4人,那么年齡在42歲以上的職工有幾人?

【答案】(1)50人;(2)60%;(3)15人.

【解析】試題分析:(1)將直方圖中提供的頻數(shù)之和求出即可得;

(2)不小于38歲但小于44歲的職工人數(shù)占職工總?cè)藬?shù)的百分比=頻數(shù)÷總數(shù);

(3)用后三組的人數(shù)之和減去4即可得.

試題解析:(1)由直方圖可知:該單位職工共有4+7+9+11+10+6+3=50(人);

(2)因為不小于38歲但不小于44歲的職工人數(shù)=9+10+11=30,

所以占職工總?cè)藬?shù)的百分比=30÷50=60%;

(3)由直方圖可知,42歲以上的職工有10+6+3-4=15(人).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:方程=的解是x=,方程=的解是x=,試猜想:

1)方程+=+的解;

2)方程=的解(a、bcd表示不同的數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)在如圖所示的數(shù)軸上,把數(shù)﹣2, ,4,,2.5表示出來,并用將它們連接起來;

(2)假如在原點處放立一擋板(厚度不計),有甲、乙兩個小球(忽略球的大小,可看作一點),小球甲從表示數(shù)﹣2的點處出發(fā),以1個單位長度/秒的速度沿數(shù)軸向左運動;同時小球乙從表示數(shù)4的點處出發(fā),以2個單位長度/秒的速度沿數(shù)軸向左運動,在碰到擋板后即刻按原來的速度向相反的方向運動,設運動的時間為t(秒).

請從A,B兩題中任選一題作答.

A.當t=3時,求甲、乙兩小球之間的距離.

B.用含t的代數(shù)式表示甲、乙兩小球之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,BE,CD分別為其角平分線且交于點O.

(1)當∠A60°時,求∠BOC的度數(shù);

(2)當∠A100°時,求∠BOC的度數(shù);

(3)當∠Aα時,求∠BOC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正比例函數(shù)y=x的圖象與反比例函數(shù)y=(k≠0)在第一象限的圖象交于A點,過A點作x軸的垂線,垂足為M,已知△OAM的面積為1.如果B為反比例函數(shù)在第一象限圖象上的點(點B與點A不重合),且B點的橫坐標為1,在x軸上求一點P,使PA+PB最小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABEF,則∠A、CD、E滿足的數(shù)量關(guān)系是(

A. ACDE=360°

B. ADCE

C. ACDE=180°

D. ECDA=90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小紅與小蘭從學校出發(fā)到距學校5千米的書店買書,如圖反應了他們兩人離開學校的路程與時間的關(guān)系.請根據(jù)圖形解決問題.

(1)小紅與小蘭誰先出發(fā)?早出發(fā)幾分鐘?

(2)小蘭前20分鐘的速度和最后10分鐘的速度各是多少?

(3)小紅與小蘭從學校到書店的平均速度各是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線ABCD相交于點O,在∠COB的內(nèi)部作射線OE.

1)若∠AOC=36°,COE=90°,求∠BOE的度數(shù);

2)若∠COEEOBBOD=432,求∠AOE的度數(shù).

查看答案和解析>>

同步練習冊答案