【題目】如圖,在平面直角坐標(biāo)系 xOy 中,已知正比例函數(shù) y1=﹣2x 的圖象與反比例函數(shù) y2的圖象交于 A(﹣1,a),B 兩點(diǎn).

(1)求出反比例函數(shù)的解析式及點(diǎn) B 的坐標(biāo);

(2)觀察圖象,請直接寫出滿足 y≤2 的取值范圍;

(3)點(diǎn) P 是第四象限內(nèi)反比例函數(shù)的圖象上一點(diǎn),若POB 的面積為 1,請直接寫出點(diǎn) P的橫坐標(biāo).

【答案】(1)y=﹣,B(1,﹣2);(2)x﹣1 x>0;(3).

【解析】

(1)已知點(diǎn)A的坐標(biāo)代入正比例函數(shù)可求出a,再把點(diǎn)A坐標(biāo)代入可求出反比例函數(shù)解析式;又因?yàn)檎壤瘮?shù)和反比例函數(shù)交點(diǎn)是A、B,可知A、B兩點(diǎn)關(guān)于原點(diǎn)對稱從而可求出B點(diǎn)坐標(biāo)

(2)觀察圖像即可得出

(3)根據(jù)題意補(bǔ)全圖形把三角形的面積轉(zhuǎn)換成梯形的面積然后根據(jù)已知求解一元二次方程,把不符合實(shí)際情況的根舍掉即可得出答案。

(1) A(﹣1,a代入 y=﹣2x,可得 a=2,

A(﹣1,2),

A(﹣1,2)代入 y,可得 k=﹣2,

反比例函數(shù)的表達(dá)式為 y=﹣,

點(diǎn) B 與點(diǎn) A 關(guān)于原點(diǎn)對稱,

B(1,﹣2).

(2)∵A(﹣1,2),

y≤2 的取值范圍是 x﹣1 x>0;

(3) BMx 軸于 M,PNx 軸于 N,

S 梯形 MBPNSPOB=1,

設(shè) Pm,﹣),×(2+)(m﹣1)=1 ×(2+)(1﹣m)=1整理得,m2m﹣1=0 m2+m+1=0,

解得 m

P 點(diǎn)的橫坐標(biāo)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ADBC上的高,tanB=cos∠DAC.

(1)求證:AC=BD;

2)若sinC=,BC=12,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:m,n是方程x2﹣6x+5=0的兩個實(shí)數(shù)根,且mn,拋物線y=﹣x2+bx+c的圖象經(jīng)過點(diǎn)Am,0),B(0,n).

(1)求這個拋物線的解析式;

(2)設(shè)(1)中的拋物線與x軸的另一交點(diǎn)為C,拋物線的頂點(diǎn)為D,試求出點(diǎn)CD的坐標(biāo)和△BCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù),以下說法:

它們的圖象都是開口向上;它們的對稱軸都是y軸,頂點(diǎn)坐標(biāo)都是原點(diǎn)(0,0);③當(dāng)x>0時,它們的函數(shù)y都是隨x的增大而增大;它們的開口的大小是一樣的.

其中正確的說法有_______個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在O 的內(nèi)接ABC ,∠ABC=30°,AC 的延長線與過點(diǎn) B O 的切線相交于點(diǎn) D,若O 的半徑 OC=1,BDOC,則 CD 的長為(

A. 1+ B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校廣場有一段25米長的舊圍欄,現(xiàn)打算利用該圍欄的一部分(或全部)為一邊,圍成一塊100平方米的長方形草坪(如圖CDEF,CDCF)已知整修舊圍欄的價格是每米1.75元,建新圍欄的價格是4.5元.若CFx米,計(jì)劃修建費(fèi)為y元.

(1)求yx的函數(shù)關(guān)系式,并指出x的取值范圍;

(2)若計(jì)劃修建費(fèi)為150元,能否完成該草坪圍欄的修建任務(wù)?若能完成,請算出利用舊圍欄多少米;若不能完成,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點(diǎn),點(diǎn)

1)求,的值;

2)求的面積;

3)直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)ymx+mym≠0)的圖象可能是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數(shù)是(  )

A. 30° B. 60° C. 30°150° D. 60°120°

查看答案和解析>>

同步練習(xí)冊答案