【題目】如圖,在四邊形ABCD中,AB=1,AD=,BD=2,∠ABC+∠ADC=180°,CD=.
(1)判斷△ABD的形狀,并說明理由;
(2)求BC的長(zhǎng).
【答案】(1)△ABD是直角三角形.理由見解析;(2).
【解析】
(1)根據(jù)勾股定理的逆定理即可證得△ABD是直角三角形;
(2)根據(jù)四邊形內(nèi)角和定理可證得是直角三角形,再根據(jù)勾股定理即可求得答案.
(1)△ABD是直角三角形.
理由如下:在△ABD中,
∵AB2+AD2=12+()2=4,
BD2=22=4,
∴AB2+AD2=BD2.
∴△ABD是直角三角形.
(2) 在四邊形ABCD中,
∵∠ABC+∠ADC=180°,
∴∠A+∠C=180°.
由(1)得∠A=90°,∴∠C=90°.
在中,∠C=90°,
BC2=BD2-CD2=22-()2=2.
∴BC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)銷售一批名牌襯衫,平均每天可售出件,每件盈利元,為擴(kuò)大銷售增加盈利,盡快減少庫存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)一元,市場(chǎng)每天可多售件,問他降價(jià)多少元時(shí),才能使每天所賺的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為1的小正方形組成的網(wǎng)格中,△ABC的頂點(diǎn)均在格點(diǎn)上,請(qǐng)按要求完成下列各題:
(1)以原點(diǎn)O為對(duì)稱中心作△ABC的中心對(duì)稱圖形,得到△A1B1C1,請(qǐng)畫出△A1B1C1,并直接寫出A1、B1、C1的坐標(biāo);
(2)再將△A1B1C1繞著點(diǎn)A1順時(shí)針旋轉(zhuǎn)90°,得到△A1B2C2,請(qǐng)畫出△A1B2C2,并直接寫出點(diǎn)B2、C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)P是等邊△ABC內(nèi)一點(diǎn),PA=3,PB=4,PC=5,求∠APB的度數(shù).
(1)在圖中畫出:將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°后得到△BEA;
(2)連接EP,完成你的解答.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)概念:百度百科上這樣定義絕對(duì)值函數(shù):y=│x│=
并給出了函數(shù)的圖像(如圖).
方法遷移
借鑒研究正比例函數(shù)y=kx與一次函數(shù)y=kx+b(k,b是常數(shù),且k≠0)之間關(guān)系的經(jīng)驗(yàn),我們來研究函數(shù)y=│x+a│(a是常數(shù))的圖像與性質(zhì).
“從‘1’開始”
我們嘗試從特殊到一般,先研究當(dāng)a=1時(shí)的函數(shù)y=│x+1│.
按照要求完成下列問題:
(1)觀察該函數(shù)表達(dá)式,直接寫出y的取值范圍;
(2)通過列表、描點(diǎn)、畫圖,在平面直角坐標(biāo)系中畫出該函數(shù)的圖像.
“從‘1’到一切”
(3)繼續(xù)研究當(dāng)a的值為-2,-,2,3,…時(shí)函數(shù)y=│x+a│的圖像與性質(zhì),
嘗試總結(jié):
①函數(shù)y=│x+a│(a≠0)的圖像怎樣由函數(shù)y=│x│的圖像平移得到?
②寫出函數(shù)y=│x+a│的一條性質(zhì).
知識(shí)應(yīng)用
(4)已知A(x1,y1),B(x2,y2)是函數(shù)y=│x+a│的圖像上的任意兩點(diǎn),且滿足x1<x2≤-1時(shí), y1>y2,則a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,,邊、都在軸的正半軸上,,,,.反比例函數(shù)的圖象經(jīng)過點(diǎn),交邊于點(diǎn),交邊于點(diǎn).
(1)分別求出點(diǎn)、的坐標(biāo);
(2)求以、、為頂點(diǎn)的的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,BD為一條對(duì)角線,AD∥BC,AD=2BC,∠ABD=90°,E為AD的中點(diǎn),連接BE.
(1)求證:四邊形BCDE為菱形;
(2)連接AC,若AC平分∠BAD,BC=1,求AC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com