【題目】如圖,RtABC的內(nèi)切圓⊙O與兩直角邊AB,BC分別相切于點D,E,過劣弧DE(不包括端點D,E)上任一點P作⊙O的切線MN,與AB,BC分別交于點M,N,若⊙O的半徑為r,則RtMBN的周長為(  )

A. r B. r C. 2r D. r

【答案】C

【解析】

試題解析:

連接OD、OE,

ORtABC的內(nèi)切圓,

ODAB,OEBC,

∵∠ABC=

∴∠ODB=DBE=OEB=,

∴四邊形ODBE是矩形,

OD=OE,

∴矩形ODBE是正方形,

BD=BE=OD=OE=r,

OABD,切BCE,切MNP,NPNE是從一點出發(fā)的圓的兩條切線,

MP=DMNP=NE,

RtMBN的周長為:MB+NB+MN=MB+BN+NE+DM=BD+BE=r+r=2r,

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖顯示了用計算機模擬隨機投擲一枚圖釘?shù)哪炒螌嶒灥慕Y(jié)果.

下面有三個推斷:

①當(dāng)投擲次數(shù)是500時,計算機記錄釘尖向上的次數(shù)是308,所以釘尖向上的概率是0.616;

②隨著實驗次數(shù)的增加,釘尖向上的頻率總在0.618附近擺動,顯示出一定的穩(wěn)定性,可以估計釘尖向上的概率是0.618;

③若再次用計算機模擬實驗,則當(dāng)投擲次數(shù)為1000時,釘尖向上的概率一定是0.620.

其中合理的是(

A. B. C. ①② D. ①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AB,CD都是的直徑,連接DB,過點C的切線交DB的延長線于點E.

如圖1,求證:

如圖2,過點AEC的延長線于點F,過點D,垂足為點G,求證:;

如圖3,在的條件下,當(dāng)時,在外取一點H,連接CH、DH分別交于點M、N,且,點PHD的延長線上,連接PO并延長交CM于點Q,若,,求線段HM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:ABC是邊長為3的等邊三角形,BC為底邊作一個頂角為120等腰BDC.M、點N分別是AB邊與AC邊上的點,并且滿足∠MDN=60

1)如圖1,當(dāng)點DABC外部時,求證:BM+CN=MN;

2)當(dāng)點DABC內(nèi)部時,其它條件不變,請在圖2中補全圖形,并直接寫出AMN的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA,PB是⊙O的切線,A,B是切點,點C是劣弧AB上的一點,若∠P=40°,則∠ACB等于(  )

A. 80° B. 110° C. 120° D. 140°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖菱形ABCD的頂點A,Bx軸上,A在點B的左側(cè)Dy軸的正半軸上,BAD=60°,A的坐標(biāo)為(-2,0).

(1)求線段AD所在直線的表達(dá)式;

(2)動點P從點A出發(fā),以每秒1個單位長度的速度,按照A→D→C→B→A的順序在菱形的邊上勻速運動一周,設(shè)運動時間為tt為何值時,以點P為圓心、以1為半徑的圓與對角線AC相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的切線,B為切點,圓心在AC上,∠A=30°,D 的中點.

(1)求證:AB=BC;

(2)求證:四邊形BOCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個質(zhì)地均勻的正方體骰子的六個面上分別刻有16的點數(shù).將骰子拋擲兩次,擲第一次,將朝上一面的點數(shù)記為,擲第二次,將朝上一面的點數(shù)記為,則點()落在直線上的概率為:

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BP平分∠ABC,DBP上一點,EF分別在BA,BC上,且滿足DEDF,若∠BED140°,則∠BFD的度數(shù)是( 。

A. 40°B. 50°C. 60°D. 70°

查看答案和解析>>

同步練習(xí)冊答案