【題目】已知BF平分的外角,D為射線BF上一動點.
(1)如圖所示,若,求證:;
(2)在D點運動的過程中,試比較與的大小,并說明你的理由.
【答案】(1)證明見解析;(2).理由見解析.
【解析】
(1)在BE上取點M,使BM=BA,連接DM,可證明△ADB≌△MDB,可得DM=DC,可證得∠DAB=∠DCB,再結合三角形內(nèi)角和定理可證得結論;
(2)由(1)可得到DM=DC,在△DMC中,可得DM+DC>BM+BC,則有DA+DC>BA+BC,可得出結論.
解:(1)證明:如圖1,在BE上取點M,使BM=BA,連接DM,
∵BF平分∠ABE,
∴∠ABD=∠MBD,
在△ABD和△MBD中,
∴△ABD≌△MBD(SAS),
∴DM=DA,∠DAB=∠DMB,
又∵DA=DC,
∴DM=DC,
∴∠DMB=∠DCB,
∴∠DAB=∠DCB,
∴∠ABC=∠ADC;
(2).
理由如下:
在(1)中可得△ABD≌△MBD,
∴AD=MD,AB=MB,
在△DMC中,由三角形三邊關系可得DM+DC>MC,
∴DM+DC>MB+BC,
∴DA+DC>BA+BC,
即BA+BC<DA+DC.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形網(wǎng)格中每個小正方形邊長都是1.
(1)畫出△ABC關于直線1對稱的圖形△A1BlCl;
(2)在直線l上找一點P,使PB=PC;(要求在直線1上標出點P的位置)
(3)連接PA、PC,計算四邊形PABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD中,點E在AD上,請僅用無刻度直尺按要求作圖(保留作圖痕跡,不寫作法)
(1)在圖1中,過點E作直線EF將□ABCD分成兩個全等的圖形;
(2)在圖2中,DE=DC,請你作出∠BAD的平分線AM.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】沿海某城市A的正南方200千米B處有一臺風中心,其中心最大風力為12級,每遠離臺風中心20千米,風力就會減弱一級,該臺風中心現(xiàn)在15千米/時的速度沿北偏東30°方向往C移動且臺風中心風力不變,若城市所受風力達到或超過5級,則稱為受臺風影響.
(1)該城市是否受到此次臺風影響?請說明理由;
(2)若會受到臺風影響,那么臺風影響該城市持續(xù)時間有多長?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD是高,CE是中線,DG垂直平分CE,連接DE.
(1)求證:DC=BE;
(2)若∠AEC=72°,求∠BCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖8,AB兩地之間有一座山,以前從A地到B地需要經(jīng)過C地.現(xiàn)在政府出資打通了一條山嶺隧道,使從A地到B地可沿直線AB直接到達.已知BC=8km,∠A=45°,∠B=53°.
(1)求點C到直線AB的距離;
(2)求現(xiàn)在從A地到B地可比原來少走多少路程?(結果精確到0.1km;參考數(shù)據(jù):≈1.41,sin53°≈0.80,cos53°≈0.60)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是邊長為12 cm的正三角形,動點P從A向B以2 cm/s勻速運動,同時動點Q從B向C以1 cm/s勻速運動,當點P到達點B時,P,Q兩點停止運動,設點P的運動時間為t秒,則當△PBQ為直角三角形時,t的值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點E作⊙O的切線交AB的延長線于F,切點為G,連接AG交CD于K.
(1)如圖1,求證:KE=GE;
(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;
(3)如圖3,在(2)的條件下,連接CG交AB于點N,若sinE=,AK=,求CN的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com