(1999•成都)已知:如圖,MN為⊙O的直徑,l⊥MN于H,割線MCA及弦MBD分別交⊙O于C、D.
求證:MA•MC=MB•MD.

【答案】分析:先連接CN、DN,有MN⊥l,AB是直徑,可得一組對應(yīng)角都是90°,再加上一對公共角,可證兩個直角三角形全等Rt△MND∽Rt△MBH,由此可得比例線段,同理可證另一對直角三角形全等Rt△AHM∽Rt△NCM,也可得比例線段,利用等量代換,可證此題.
解答:證明:連接CN、DN,(1分)
∵MN是直徑,
∴∠D=90°(1分)
∵l⊥MN,
∴∠MHB=90°(1分)
在△MND與△MBH中,∵∠BMH=∠NMD,
∴Rt△MND∽Rt△MBH,
=
∴MB•MD=MN•MH①(2分)
同理可證Rt△AHM∽Rt△NCM,

∴MN•MH=MA•MC②(2分)
由①、②,有MA•MC=MB•MD.
點評:本題利用了直徑所對的圓周角是90°、相似三角形的判定和性質(zhì)、等量代換等知識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:1999年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(02)(解析版) 題型:解答題

(1999•成都)已知直線y=x和y=-x+m,二次函數(shù)y=x2+px+q的圖象的頂點為M.
(1)若M恰好在直線y=x與y=-x+m的交點處,試證明:無論m取何實數(shù)值,二次函數(shù)y=x2+px+q的圖象與直線y=-x+m總有兩個不同的交點.
(2)在(1)的條件下,若直線y=-x+m過點D(0,-3),求二次函數(shù)y=x2+px+q的表達式,并作出其大致圖象.
(3)在(2)的條件下,若二次函數(shù)y=x2+px+q的圖象與y軸交于點C,與x軸的左交點為A,試在直線y=x上求異于M的點P,使點P在△CMA的外接圓上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(01)(解析版) 題型:選擇題

(1999•成都)已知直線y=kx+b經(jīng)過點A(2,4)和點(0,-2),那么這條直線的解析式是( )
A.y=-2x+3
B.y=3x-2
C.y=-3x+2
D.y=2x-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年四川省成都市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(1999•成都)已知直線y=x和y=-x+m,二次函數(shù)y=x2+px+q的圖象的頂點為M.
(1)若M恰好在直線y=x與y=-x+m的交點處,試證明:無論m取何實數(shù)值,二次函數(shù)y=x2+px+q的圖象與直線y=-x+m總有兩個不同的交點.
(2)在(1)的條件下,若直線y=-x+m過點D(0,-3),求二次函數(shù)y=x2+px+q的表達式,并作出其大致圖象.
(3)在(2)的條件下,若二次函數(shù)y=x2+px+q的圖象與y軸交于點C,與x軸的左交點為A,試在直線y=x上求異于M的點P,使點P在△CMA的外接圓上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年四川省成都市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(1999•成都)已知直線y=kx+b經(jīng)過點A(2,4)和點(0,-2),那么這條直線的解析式是( )
A.y=-2x+3
B.y=3x-2
C.y=-3x+2
D.y=2x-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1999年四川省成都市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(1999•成都)已知:如圖,AB和AC與⊙O相切于B、C,P是⊙O上一點,且PE⊥AB于E,PD⊥BC于D,PF⊥AC于F.
求證:PD2=PE•PF.

查看答案和解析>>

同步練習(xí)冊答案