求證:兩條直線被第三條直線所截,如果同旁內(nèi)角的角平分線互相垂直, 那么這兩條直線互相平行.

證明過程見試題解析.

解析試題分析:兩條直線被第三條直線所截,同旁內(nèi)角的角平分線互相垂直,根據(jù)角平分線的性質(zhì)求出這對(duì)同旁內(nèi)角和的一半是90°,得到一對(duì)同旁內(nèi)角的和是180°,所以兩條直線平行.
試題解析:如圖,已知AB、CD被EF所截,EG、FG分別平分∠BEF、∠DFE,且EG⊥FG,求證:AB∥CD.

證明:∵EG⊥FG,∴∠GEF+∠EFG=90°,∵EG、FG分別平分∠BEF、∠DFE,∴∠BEF+∠DFE=2(∠GEF+∠EFG)=180°,∴AB∥CD.
考點(diǎn):1.平行線的判定;2.角平分線的定義.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖:BD平分∠ABC,F在AB上,G在AC上,F(xiàn)C與BD相交于點(diǎn)H.,
求證: .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知∠AOB, OE平分∠AOC, OF平分∠BOC.

(1)若∠AOB是直角,∠BOC=60°,求∠EOF的度數(shù);
(2)猜想∠EOF與∠AOB的數(shù)量關(guān)系;
(3)若∠AOB+∠EOF=156°,則∠EOF是多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,是直角,,的平分線,的平分線.

(1)求的大小.
(2)當(dāng)銳角的大小發(fā)生改變時(shí),的大小是否發(fā)生改變?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

填寫適當(dāng)?shù)睦碛桑喝鐖D,已知:AB∥ED,你能求出∠B+∠BCD+∠D的大小嗎?
解:過點(diǎn)C畫FC∥AB
∵AB∥ED( 。
FC∥AB(  )
∴FC∥ED( 。
∴∠B+∠1=180°
∠D+∠2=180°(  )
∴∠B+∠1+∠D+∠2=  °(    )
即:∠B+∠BCD+∠D=360°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,△ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F.

(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長(zhǎng);
(3)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到什么位置時(shí),四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平行四邊形ABCD中,AD>AB.

(1)作出∠ABC的平分線(尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)若(1)中所作的角平分線交AD于點(diǎn)E,AF⊥BE,垂足為點(diǎn)O,交BC于點(diǎn)F,連接EF.求證:四邊形ABFE為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,邊長(zhǎng)為6的大正方形中有兩個(gè)小正方形,若兩個(gè)小正方形的面積分別為,則的值為

A.16 B.17 C.18 D.19

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知a∥b,小亮把三角板的直角頂點(diǎn)放在直線b上,若∠1=40°,則∠2的度數(shù)為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案