【題目】如圖,菱形ABCD的邊長為6,∠B120°.點P是對角線AC上一點(不與端點A重合),則AP+PD的最小值為_____

【答案】3

【解析】

過點PPEAB于點E,過點DDFAB于點F,根據(jù)四邊形ABCD是菱形,且∠B120°,∠DAC=∠CAB30°,可得PEAP,當(dāng)點D,P,E三點共線且DEAB時,PE+DP的值最小,最小值為DF的長,根據(jù)勾股定理即可求解.

解:如圖,過點PPEAB于點E,過點DDFAB于點F,

∵四邊形ABCD是菱形,且∠B120°,

∴∠DAC=∠CAB30°,

PEAP;

∵∠DAF60°,

∴∠ADF30°,

AFAD×63;

DF3;

AP+PDPE+PD,

∴當(dāng)點D,PE三點共線且DEAB時,

PE+DP的值最小,最小值為DF的長,

AP+PD的最小值為3.

故答案為:3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,已知,,,點的延長線上,點的延長線上,有下列結(jié)論:①;②;③;④若,則點的距離為.則其中正確結(jié)論的個數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖像與軸交于點,左側(cè)),與軸正半軸交于點,點在拋物線上,軸,且

1)求點,的坐標(biāo)及的值;

2)點軸右側(cè)拋物線上一點.

如圖,若平分,于點,求點的坐標(biāo);

如圖,拋物線上一點的橫坐標(biāo)為2,直線軸于點,過點作直線的垂線,垂足為,若,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是等邊三角形,,點上,,延長線上一點,將線段繞點逆時針旋轉(zhuǎn)90°得到線段,當(dāng)時,線段的長為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)在第一象限的圖象交于兩點,與軸交于點連接

1)求反比例函數(shù)的解析式;

2)若點軸上,且,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB是⊙O的直徑,點C是過點A的⊙O的切線上一點,連接OC,過點AOC的垂線交OC于點D,交⊙O于點E,連接CE

1)求證:CE與⊙O相切;

2)連結(jié)BD并延長交AC于點F,若OA=5sinBAE=,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OA,OD是⊙O半徑.過A作⊙O的切線,交∠AOD的平分線于點C,連接CD,延長AO交⊙O于點E,交CD的延長線于點B

(1)求證:直線CD是⊙O的切線;

(2)如果D點是BC的中點,⊙O的半徑為 3cm,求的長度.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD的邊長AB=2,EAB的中點,FBC的中點,AF分別與DE、BD相交于點M,N,則MN的長為( 。

A. B. ﹣1 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織學(xué)生到恩格貝和康鎮(zhèn)進(jìn)行研學(xué)活動,澄澄老師在網(wǎng)上查得,分別位于學(xué)校的正北和正東方向,位于南偏東37°方向,校車從出發(fā),沿正北方向前往地,行駛到15千米的處時,導(dǎo)航顯示,在處北偏東45°方向有一服務(wù)區(qū),且位于,兩地中點處.

1)求,兩地之間的距離;

2)校車從地勻速行駛1小時40分鐘到達(dá)地,若這段路程限速100千米/時,計算校車是否超速?

(參考數(shù)據(jù):,,

查看答案和解析>>

同步練習(xí)冊答案